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1 Background

The research program on advanced concepts and methods of approximate seeks to establish clear formal
foundations that advance the understanding of approximate reasoning methodologies. The approaches that
are being studied are fundamental techniques for the analysis of imprecise, uncertain, and unreliable data
that are applicable in a wide variety of important contexts.

In particular, we want to identify and study frameworks that facilitate the comparison of the features of
each approach allowing the determination of its utility in the solution of specific problems. Our research also
seeks to broaden the scope of applicability of existing methods by consideration of approximate reasoning
mechanisms that, going beyond the mere extension of classical deductive techniques, seek to develop intelli-
gent systems capable of performing inductive (i.e., learning), abductive (i.e., discovery or explanation), and
analogical (i.e., similarity-based) functions. Furthermore, we are interested in expanding the scope of our
knowledge sources beyond behavioral knowledge (e.g., expert-generated rules) and current observations, to
include historical databases of relevant experience.

2 U.S. Air Force Relevance

The questions addressed by this program of research are related to basic issues of knowledge and information
and, as such, applicable results will have a wide impact accross a variety of important applications of USAF
interest.

Practically every important real-life problem is characterized by the presence of information that is not
totally precise, certain, or credible. These undesirable knowledge features are often found in the military
domain where the size and complexity of systems, coupled with the presence of agents actively seeking to
deny and falsify information, renders their precise observation difficult or impossible.

The need to process imprecise and uncertain knowledge is obvious in military intelligence problems,
where the objectives are situation assessment and decision-support on the basis of the information provided
by multiple items of evidence that, typically, are imprecise, incomplete, and of limited reliability. In many
other problems of Air Force interest, however, availability of tools for approximate reasoning (including
methods to determine applicability and usefulness of specific techniques) is of paramount importance.

Probabilistic reasoning, for example, is a key element of the command and control process beyond situ-
ation assessment, due to its direct relevance to issues such as the determination of the viability of missions
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and the reliability of information sources and control chains. In a broader context, probabilistic analysis
is an essential tool in the failure-diagnosis and reliability-analysis problems that are commonly found any
organization that utilizes large-scale systems.

Possibilistic reasoning methods, because of their relations with analogical reasoning (which were elab-
orated and clarified in the task being described), are also of direct relevance to a myriad of problems of
interest. Situation analysis, plan construction (e.g., mission planning), and system design are just a few of
the potential applications of methods that exploit databases of historical experience to determine solutions
to new problems. For example, in a command and control application, lessons learned in previous situations
may be directly retrieved and analyzed to determine courses of action that are applicable in the current
context. Similarly, system design (e.g., an aircraft subsystem) might be considerably simplified by use of
similarity-based tools that suggest plausible design choices on the basis of existing knowledge.

Beyond these applications of "case-based reasoning," recent experience with the development of large-
scale controllers based on possibilistic logic indicates that this type of reasoning leads to the development of
autonomous, robust controllers for unstable systems. Among these, the control of active flexible wings using
a fuzzy-logic approach (being currently considered by Rockwell International) deserves special mention due
to its USAF relevance. Similar controllers might be also conceivably used to stabilize autonomous walking
robots and to plan their activities.

3 Accomplishments

The major portion of our investigative effort was devoted to the development of a unified framework for the
description of approximate reasoning methods that facilitates the study of their fundamental characteristics.
This objective was attained by consideration of structures, defined in spaces of possible worlds that measure
either the relative size of certain subsets (for probabilistic methods) or the similarity between possible states
(for possibilistic methods).

Possible worlds are formalizations of the notion of possible state or behavior of a system (e.g., the possible,
but typically unknown, situation in a battlefield, possibly encompassing its potential modifications in time).
Using this concept, an approximate reasoning problem may be described as one where available evidence
(e.g., battlefield intelligence) is insufficient to determine ir the actual state of the world lies among those
conceivable possibilities (i.e., possible worlds), where a statement ('hypothesis") about the system is true
(e.g., whether a SAM battery is currently at a specific location).

The major contribution of the research performed during the reporting period has been the interpretation
of possibilistic methods in terms of similarity functions between possible worlds. The formal results derived
in this research, which are summarized in the paper "The Semantics of Vague Knowledge," which is enclosed
as an integral part of this report, show that possibilistic methods are substantially different in nature from
their probabilistic counterparts. Furthermore, as discussed in detail in that work, these results have shown
that all major technologies proposed for the analysis of imprecise information, including nonmonotonic logic
and "qualitative reasoning" approaches, may be easily described and understood in terms of models based
on possible worlds.

For example, probabilistic methods may be characterized as being concerned with the estimation of
measures of the sets of possible worlds that are both compatible with the evidence and are such that the
hypothesis is true. Since any proposition is equivalent to a set of possible worlds, these set measures are
usually estimated by the past frequency of truth of the hypothesis under similar circumstances. Probabilistic
assessments describe therefore the "tendency" or "propensity" of a system to behave in certain ways (for
example, to break down after so many hours of operation). Except in extreme cases, these assessments do
not assert that the hypothesis is true or false but rather that there is a likelihood (expressed numerically)
or chance that the hypothesis will be true.

Possibilistic methods, on the other hand, are concerned with the identification of statements that are
true and that resemble, in some respect, the hypothesis. Their bases are certain measures (metrics) that
describe how "similar" or "close" are pairs of possible worlds rather than to measures that characterize the
"size" of subsets of possible worlds. These metrics formally capture the notion that two possible states of
affairs are similar in that certain propositions that are true in one resemble those that are true in the other
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(e.g., "the pressure is greater than 100 lb/sq.in." and "the pressure is greater than 110 lb./sq.in."). While
a probabilistic statement describes tendency towards truth (e.g., "the probability of runway destruction is
80%"), the possibilistic answer asserts the truth of a related proposition (e.g., "the runway will be definitely
inoperative for all aircraft of type A or type B").

Contrary to the opinions held by some, the results of our research show that possibilistic methods are
not easily interpreted or explained by probabilistic structures. Possibilistic structures, on the other hand,
have been shown to be close in character to the discretizations used in "qualitative reasoning," where scalar
variables are substituted by coarser frameworks that replace all numbers by three possible values: zero,
negative, and positive. The possibilistic schemes generalize this idea in that significant groups of variable
values (or "granules") may be arbitrarily defined and in that these granules are "fuzzy," in the sense that
whenever the value of the variable is "close" to some typical value in the granule, results applicable to the
typical value may be "extrapolated" to the actual value.

Furthermore, our research indicates that it is also improper to regard probabilistic and possibilistic
methods as competitive technologies. Since their aims and output are fundamentally different, the proper
attitude is to regard these methodologies as complementary tools that help, in different ways, in assessing
the state of the world.

The formal model leading to our results is a Kripke-type semantic model with the customary relation of
accessibility replaced by multiple relations indexed by a parameter a. Although it is easier to think of this
parameter in numerical terms, our model is very general allowing the use of symbolic, nonnumeric, scales to
assess resemblance. Furthermore, our formulation justifies certain formal requirements that any similarity
measure must obey. The major highlights of the model are described in the technical note "On the Semantics
of Fuzzy Logic," which is enclosed as part of this report. These developments may be summarized as follows:

* Definition of multiple accessibility relations by a similarity function that defines a metric in a space of
possible worlds (thus allowing use of "continuity" arguments to "extrapolate" results from one world
to those that are close to it)

* Generalization of the modal notion of possibility to a graded notion of possibility that is related to the
so-called "de re" interpretation of conditional statements in modal logic.

* Characterization of similarities as being defined either from the joint viewpoint of several variables or
descriptors (joint similarities), or being limited to considerations from some limited respect (marginal
similarities).

* Identification of relationships of marginal similarities with topological and metric concepts (mainly,
the so-called "Hausdorff" distance).

* Definition of unconditioned and conditional possibility functions from similarity functions.

* Formal justification of the generalized modus ponens of Zadeh as an extension of the corresponding
classical inferential rule. This central result generalizes the transitivity of set inclusion that makes the
modus ponens valid (i.e., if A is a subset of B and if B is a subset of C, then A is a subset of C) into a
relationship between the sizes of the "neighborhoods" of sets that include each other (e.g., if A is in a
neighborhood of size a of B, and if B is in a neighborhood of size 0 of C, then A is in a neighb',rhood
of size y = f(a, P) of C). The generalized modus ponens, therefore, combines logical principies with
the properties of a metric relation to provide a sound, correct, form of logical "extrapolation."

* Characterization of the problem (important in practice) of derivation of similarity functions from
possibility functions.

In addition to our basic research in the semantics of possibilistic approaches, w, have continued our
research into the definition and utilization of conditional belief measures in the Demp'ter-Shafer calculus
of evidence. Applicable formulas are currently being evaluated on the basis of their applicability to general
cases (in general, the combination of conditioned and unconditioned evidence does not lead to functions that
are compatible with the axioms of the evidential calculus) and in terms of the computational complexities
of the algorithms required for their evaluation.
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4 Status and Plan

Our basic semantic model of fuzzy logic is complete. Our immediate concern is the evaluation of alternative
formulations that rely on classes of similarity functions that satisfy certain important properties (mainly
assuring that the value of the similarity between two objects from some respect, like color, be always higher
than the value of the similarity between those objects from multiple respects, e.g., color and shape).

Our long term plans, however, focus on the important problem of deriving similarity values from possibil-
ity distributions. In our model, possibility distributions may be thought of as similarities from some respect
(e.g., "pressure") that measure how close is a particular situation (e.g., "pressure greater than 50 lb./sq.in.)
to a set of "typical examples" (e.g., "pressure greater than 100 lb./sq.in."). This measure of object-to-set
resemblance defines a "linguistic value" (e.g., "very high pressure") that may be used as the basis to extrap-
olate from statements that are true in any prototype to statements that are true in the particular case under
consideration.

The role of similarities in our formulation, however, is primarily conceptual; intended to explain a complex
notion (i.e., possibility) in terms of a more primitive concept (i.e., similarity). Although our formulas permit
the computation of possibility values from similarity values, similarities (representing proximity from the
joint viewpoint of several respects) will be derived, in practical applications such as similarity-driven case-
based reasoning, from possibility distributions (characterizing proximity between sets of objects from a
limited perspective). For this reason, it is our intent to focus future attention on the problems associated
with the derivation of similarity functions from possibility distributions. Our point of departure is existing
work linking similarity relations with certain classes of subsets of possible worlds. The derivation of specific
formulas must await, however, the evaluation of models based on restricted classes of similarity functions
characterized both by desirable theoretical properties (such as mentioned above) and by their utility in
practical applications (primarily, case-based reasoning).

In addition, we plan to utilize the formulas and relations derived in our semantic model to further extend
possibilistic calculi by identification of relationships between distributions that may be used to compute
some of them as a function of others (e.g., conditional possibility distributions from joint and marginal
unconditional distributions). In order to assess the applicability and efficiency of algorithms based on such
relations, we plan to develop (in collaboration with Dr. Leonard Wesley of the Artificial Intelligence Center,
SRI International) a computational environment (ANALOG) for the testing of similarity-based analogical
reasoning procedures. As part of these activities, Dr. Wesley is currently engaged in the collection of suitable
databases that may be used in our computational experiments.

5 Conference Participation. Publications

1. E.H. Ruspini. The Semantics of Vague Knowledge. Presented at the Second International Conference
on the Processing and Management of Uncertainty by Expert Systems, Urbino, Italy, 1988.

2. E.H. Ruspini. Generalized Similarity Relations and the Semantics of Fuzzy Logic. Presented at the
Workshop on Approximate Reasoning in Expert Systems, Blanes, Spain, 1989.

3. E.H. Ruspini. The Semantics of Fuzzy Logic. Presented at the Third International Fuzzy Systems
Associations Conference, Seattle, Washington, 1989.

4. E.H. Ruspini participated as an invited discussant in the Workshop on Nonstandard Logics, Roca-
madour, France, 1988. His discussion of papers presented by panelists presenting position papers in
approximate reasoning will appear in a volume to be published by Academic Press in 1989.

5. E.H. Ruspini participated as a reviewer in the DRUMS/RP3 program sponsored by the European
Economic Community.

6. E.H. Ruspini. The Semantics of Vague Knowledge. Revue Internationale de Systimique, to appear,
1990.
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7. E.H. Ruspini. On the Semantics of Fuzzy Logic. Technical Note No. 475, SRI International, Menlo
Park, California, November 1989.

In addition the principal investigator was the recipient of a Fulbright Fellowship to conduct a course in
Approximate Reasoning in Spain in the Spring 1989.
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The Semantics of Vague Knowledge

Enrique H. Ruspini*
Artificial Intelligence Center

SRI International
Menlo Park, California, U.S.A.

Abstract

This paper is devoted to the discussion of basic issues related to the meaning of
imprecise, uncertain, and vague knowledge, its manipulation, and its utilization. The
informational deficiencies that characterize this type of knowledge are described in terms
of the impossibility to determine, without ambiguity, the truth value of certain hypothe-
ses - i.e., statements of interest to those seeking to understand the state and behavior
of a real-world system.

Using a "possible worlds" perspective, this inability may also be characterized by
the presence of conceivable (i.e., consistent with evidence) circumstances where the
proposition is true, and of equally admissible circumstances where it is false. From such
a viewpoint, approximate reasoning techniques are presented as producers of correct
descriptions of properties of the class of possible worlds that are consistent with observed
evidence, rather than as the results of some relaxation of the notion of "truth-value."

Two major classes of approximate reasoning systems are identified - probabilistic
and possibilistic - and their major conceptual differences are described. The theoretical
underpinnings of each methodological approach are described, and the current level of
understanding of their major functional structures and concepts is discussed.

The discussion of probabilistic approaches encompasses both subjectivist and ob-
jectivist perspectives, and also includes nonclassical approaches (such as the Demp-
ster/Shafer calculus of evidence) that are related to the notion of interval probabilities.
The discussion of possibilistic approaches, on the other hand, stresses the relations be-
tween the concepts of possibility and similarity that have been recently studied by the
author.

Finally, nonmonotonic logic and qualitative process theory concepts are briefly ex-
amined from the perspective of possible-world semantics.

*This work was supported by the Air Force Office of Scientific Research under Contract No. F49620-89-
K-0001 and by the National Science Foundation under Grant DCR-85-13139. The views and conclusions
contained in this paper are those of the author and should not be interpreted as representative of the
official policies, either express or implied, of the Air Force Office of Scientific Research or the United States
Government.



1 Introduction

This paper is devoted to the discussion of basic issues relevant to the purpose of approxi-
mate reasoning methodologies with emphasis on the meaning of their basic structures and
concepts. Approximate reasoning systems may be briefly characterized as automated agents
(e.g., computer programs and systems) that seek to identify the state of a real-world system
on the basis of knowledge that it is imprecise - i.e., available information does not possess
the desired degree of detail - and uncertain - i.e., we are not absolutely certain about
the correctness of such information.

Under these conditions it is possible, usually easily so, to conceive of situations where,
given available information, some statement about the real world is true. Under other con-
ceivable circumstances - equally admissible given the available knowledge - that state-
ment is false. In a majority of weather-forecasting applications, for example, the information
collected by a variety of sensors is often insufficient to determine if rain will fall at a given
location at a given future time. Depending on the evolution and interaction of the different
components and subsystems of the atmosphere, rain may actually fall or may not fall.

The importance and ubiquity of problems characterized by information that is imprecise
and uncertain make the development of so-called "approximate reasoning" systems one of
the most important technological requirements to be met by artificial intelligence proce-
dures that, going beyond the foundations of classical deductive techniques, must cope with
the undesirable features of the underlying knowledge. The current lack of understanding of
the principles that underlie these methodologies combined with their present state of tech-
nological development - often exemplified by the use of questionable "ad hoc" methods -

has led to considerable controversy among practitioners who have, in recent years, debated
their relative advantages and disadvantages.

The absence of a formal unified framework for the description of the underlying concepts
and structures of various applicable technologies has complicated their understanding and
comparison, making it nearly impossible to develop even a partial consensus about the
relative applicability of each methodology. Lacking formal structures to guide, in a rigorous
fashion, the use of terms such as "probability" and "possibility," each capable of being
interpreted in a variety of ways, it is nearly impossible to evaluate arguments advanced for
or against particular positions. Furthermore, problems such as the determination of the
validity of the output of approximate reasoning systems, or of their usefulness in specific
circumstances (or even establishing the meaning of such notions), have remained largely

unaddress d.
This paper reports on the results of research toward the development of firm founda-

tions for the unified description of approximate reasoning methods, with emphasis on the
interpretati-n of their underlying concepts and structures. The formal framework derived in
this research is based on the notion of "possible worlds" as introduced in modal logics [15].
In this paper, our attention will be mainly focused on various types of probabilistic, dis-
cussed in Section 2, and possibilistic reasoning methods, presented in Section 3. Included is
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a discussion of relations with qualitative and nonmonotonic reasoning methods, which are
also concerned with problems associated with imprecise and uncertain information. Before
presenting such issues, it is important to consider the general nature of the approximate
reasoning problem.

1.1 The Nature of Approximate Reasoning

The goal of any system that relies on inference techniques is to assign a truth value, which
may be either true or false, to statements - called hypotheses - about the state or

behavior of a real world system. Due to its very nature, however, the approximate reasoning
problem is unsolvable, because of either fundamental or practical limitations.

Available information is often insufficient to determine, by means of conventional infer-
ence procedures, if a hypothesis is true or false. In some problems, the impossibility is of
a more practical nature: there are not enough resources (e.g., memory, computer time) to
determine if the hypothesis is true or not.

Whether the impossibility is fundamental or practical, the important fact is that, as
posed, an approximate reasoning problem is not solvable. Information constrains the possi-
ble truth values of hypotheses but rarely restricts them to unique values. In general, those
constraints determine a set of possible solutions. Each such solution is an assignment of
truth values that is logically consistent with observed facts and system knowledge (typi-
cally expressing laws of system behavior). For example, an observation, made several days
earlier about the location of an automobile on a highway, augmented by knowledge about
the capability of such a vehicle to proceed at certain speeds through some roads, may be
sufficient to determine a set of its possible current locations, but it will usually be unable
to pinpoint any one of them as the only possible place where the vehicle could be at the
present time.

The solution of an approximate reasoning problem is therefore a set of possibilities1

that are logically consistent with available information. In this document we use the term
possible worlds, which is borrowed from logic (specifically modal logic), to denote each such
possibility [4].

In most approximate reasoning problems it is not practically possible to describe a
set of possible worlds to an acceptable level of detail. Different methodologies have been
developed, however, to describe some properties of the set of possible solutions or, more
generally, certain constraints on values that measure such properties. For example, proba-
bilistic methods seek to identify the probability distribution of some of the variables that are
used to characterize each possible world. As we will see, often 2ven this level of detail may
not be attained, and the best we can do is to indicate that certain probability distribution
values are possible while others are not (e.g., the probability of rain will be between 600

and 80%).

'Note that this use of the term possibility is different from that used below in connection with possibilistic
reasoning.
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1.2 Possible Worlds

Possible worlds, as informally described above, are the solutions of an approximate reasoning
problem that are consistent with existing information and knowledge. In many problems,
each of these solutions corresponds to the state of a real-world system at a given instant in

time. In other examples, each possible world may also include descriptions of past, present,
and future (predicted) states of the real world. In some planning and control problems (e.g.,
autonomous robot path and activity planning), each possible world may correspond to a
description of the characteristics of a plan formulated by rational agents seeking to control
certain aspects of system behavior together with its resulting effects on the planned system
and its environment.

The characteristics and complexity of each possible solution are, therefore, highly de-
pendent on the particular real-world system being studied and the analytical requirements
of the users of the approximate reasoning system. Although, as we have just seen, this
diversity of needs leads to widely different types of possible worlds, there exists a high-level,
logical characterization of the concept of possible world in terms of the possible truth of
statements (propositions) about the real-world system being studied. This characterization
was derived by Carnap [5], who also proposed a conceptual procedure for the generation of
descriptions of all possible states of affairs.

While Carnap considered first-order-logic systems in his characterization of the con-
cept, we shall confine oursdves to a simpler, proposition-based description that captures
the essence of his construction procedure. Before proceeding to its discussion it is very

important to remark, however, that the Carnap procedure is a conceptual process intended

primarily to formalize the notion of possible world while providing clear foundations for
the discussion of other concepts (e.g., possible truth). The combinatorial explosion associ-
ated with Carnap's process makes unfeasible the actual enumeration and representation of

possible-world spaces in real-life problems.
The procedure of Carnap starts with consideration of a finite number of ground propo-

sitions

P1,P2,. Pm

that describe characteristics of a real-world system. For example, in a weather-forecasting

application, these propositions may include declarative knowledge statements such as: "The
total rainfall will be less than 1 cm." These statements are intended to capture those aspects
of the behavior of the world tkat are important to analysts and to identify that behavior

to the necessary degree of precision.
After these propositions have been identified, the process proceeds to consider all the

conjunctions of the type 2

Pi A P2 A p3 A... A pm,

2Throughout this paper we use the conjunction symbol A to mean "and," the disjunction symbol V to
mean "or," and the negation symbol - to mean "not."
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where each of the ground propositions appears once either as given or negated. If m ground

propositions had been identified, this process leads to 2m conjunctions. We eliminate from

this set conjunctions that represent logical impossibilities like, for example: "the total

rainfall will be less than 1 cm and the total rainfall will be more than 3 cm," and those

that are logically inconsistent with several prespecified propositions - axioms about the

behavior of the system being studied - a,, a 2 , . . , al, that are always assumed to be true.
The remaining members of this propositional set, or Carnapian Universe, are called

possible worlds. Each possible world is a description (to the maximum level of detail allowed

by our original set of ground propositions) of a possible, although typically unknown, state

of the system under study. Each such description is consistent both with the laws of logic

and with the axioms that constrain system behavior and may be thought of as a function

(called a valuation) that assigns to each relevant proposition a truth-value that is either

"true" or "false." Similarly, possible worlds may be thought of as sets of propositions that

contain all propositions that are true and the negation of those that are false, as illustrated in

Figure 1 where each possible world is revealed, through the help of a hypothetical "logical"

IU
IW

I ' p q -,r s-

I Figure 1: The Carnapian Universe.

microscope as a collection of true propositions. Furthermore, each possible world differs

from any other in that at least one proposition that is true in one world is false in the other.

From this logical perspective, which is particularly useful in artificial intelligence appli-

cations, the observations in a body of evidence, which correspond to the truth of certain

propositions, may be thought of as constraints on the subsets of possible worlds where the

state of the real-world syster .,ctually lies. Possible worlds that are logically consistent

with those propositions (said to be compatible with the evidence) are, generally, a proper

1 4
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subset of the Carnapian universe of possibilities.
It is generally agreed that "stronger" or "better" evidence results in subsets of possible

worlds that are smaller, in some sense, than "weak" evidence. The quality of evidence,
however, should be judged from a variety of standards. Among those, domain-dependent
criteria are usually the most important in assessing the quality of informational bodies. In
general, it is desirable that the evidence be such as to allow unambiguous answers to certain
questions of importance (i.e., hypotheses). To rephrase this statement with the help of the
Carnapian characterization, it is desirable that the evidence be such that propositions of
importance be true (or false) for every possible world compatible with the evidence, rather
than true for some and false for others.

As we have stressed before, however, an approximate reasoning problem is such that
the evidence is incapable of determining whether a hypothesis is true or false, as illustrated
in Figure 2. Approximate reasoning systems are concerned with the description of certain

Worlds consistent with the evidence ( E)

orlds loialy Inconsistent with the evidence I

HYPOTHESIS TRUE HYPOTHESIS FALSE

Figure 2: The Approximate Reasoning Problem.

properties of the set E of possible worlds that are consistent with the evidence, seeking
primarily to characterize the subsets H/ nl 'E and 9( n 'E of worlds compatible with the
evidence where a hypothesis is either true or false, respectively. The descriptions that they
provide, however, are of a substantially different nature for different approaches - not
being all based or explained, as often erroneously claimed, by probabilistic notions.

1.3 Probabilistic and Possibilistic Reasoning

In this paper we will be concerned primarily with the two major types of approximate
reasoning methodologies that are being actively used to treat practical situation-assessment
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and planning/decision problems. These methodologies are commonly said to be probabilistic
or possibilistic, respectively.

Probabilistic methods seek to describe the structure of a set of possible worlds by means
of certain conditional probability distributions (the condition being the actual evidence at3 hand). If these distributions are considered to represent the tendency or propensity of the
world to act in a repetitive fashion that may be described by a frequency of occurrence,

they are said to have an objectivist interpretation; if they represent, on the other hand, the
degrees of belief (or of commitment to certain courses of action) of certain rational agents,
then they are said to have a subjectivist interpretation.

Irrespectively of the particular interpretation used, probabilistic reasoning methods are
concerned with the likelihood (either measured by previous experience or believed by an
agent) that a particular hypothesis will be true in a given situation. Save for exceptional
cases (i.e., probabilities equal to 0 or 1), no firm assurances are given to the user of any
probabilistic methodology about the actual state of the world or its behavior. The proba-
bilistic assessment is one of tendency and is primarily useful in the "long run," that is, when
evaluated by criteria that take into account the aggregate performance of the approximate
reasoner over many situation-assessment and decision-aid examples.

Probabilistic results are particularly useful in organizations such as insurance companies
or gambling houses, where success is evaluated in terms of a population of examples (i.e.,
all insurance policies or all gambling customers). By this statement we do not mean that
probabilistic information is useless for single cases or "short runs." 3 Our point is that,

for all we know, the hypothesis may be true or may be false (that is the nature of the
approximate reasoning problem). Under such circumstances, decisions that could possibly3 lead to an undesirable state of affairs may deserve to be analyzed from other viewpoints.

Possibilistic reasoning, on the other hand, seeks to describe possible worlds in terms of
their similarity to other sets of possible worlds by placing emphasis on assessments that may

Sb. assured to be valid in each particular case and situation. Rather than describing relative
proportions (of occurrence) of possible worlds where a hypothesis of interest is true or false,
as done by probabilistic methods, possibilistic reasoning seeks to describe all possible worlds
that are compatible with evidence, in terms of their resemblance to members of certain sets
of "exemplary" or "typical" worlds.3 For example, a probabilistic method may determine that a corporation has a probability
of 80% of exceeding its profit goal for the year. This assessment is not an assurance that such
a goal will be attained. It does provide, however, some basis for subsequent management
policy. While there is a chance that profits will fall short of the goal, if management
policy be consistently applied in every fiscal period, then, in the long run, proper rational
decisions would have been made and the company could be expected to prosper (despite

possible occasional setbacks). A possibilistic method, on the other hand, may assert that
profits will amount to at least 70% of the goal figure. On some previously agreed similarity3 3 Our view, that decisions that are best in the "long run" may not be the same as those that are best in
single instances, does not agree with curret.. subjectivist orthodoxy.

*6
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scale such a statement may be translated into the possibilistic statement: "the possibility

of achieving the profit-goal is 0.7." Note that the emphasis is on certainty and comparison
between statements rather than on likelihood and chance.

In general, possibilistic methods, which are strongly rooted on fuzzy set theory (41],
provide assessments such as "the profit will be adequate," indicating that the predicted
value of the profit will have a similarity greater than zero (sometimes possibilistic techniques

produce specific lower bounds) to a value that is a good example of "adequate gain." Often
it is also said that these vague statements describe the degree of ease by which the concept
"adequate" matches the situation at hand. The ability to represent vague concepts by

possibility distributions - attained by indicating that a value of a variable matches the
vague concept to a degree - is central to fuzzy set theory, which was conceived as a basis

for the formal treatment of linguistic utterances as they are commonly found in everyday

discourse.
In summary, we may say that the approach to the analysis of imprecise and uncertain

information that is used by any approximate reasoning methodology is based on the solution
of a problem that is related to but different from, the unsolvable problem of determining,
without ambiguity, the truth of a hypothesis. In the probabilistic case, the answers provided

consist of estimates of frequency of the truth of the hypothesis in similar cases as determined
by prior observation (objectivist interpretation) or degree of commitment in a gamble based

on the actual truth of the hypothesis (subjectivist interpretation). In the possibilistic case,

in contrast, the answers provided assert that a related, similar, hypothesis is true.

2 Probabilistic Reasoning

Probabilistic reasoning methods focus on the description of the relative proportions of the

occurrence of truth or falsehood of certain hypotheses under certain evidential constraints.

These constraints, representing available evidence E, conditions the probabilities P(X =

x[TE) describing the frequency of occurrence of the value x of the state variable X when E

is true. Using again the Carnapian characterization, we may describe these techniques as
being concerned with the determination of the probability of some subsets of the Carnapian

universe on the basis of the probability of related subsets.

If possible worlds in the Carnapian universe correspond to individual combinations or

the values of n state variables X 1 , X 2 ,. . . , X,, that is,

p. = (Xi = z 1 )A(X2 = z 2 )^...A (X, = z.)

then, in general, probabilistic reasoning problems require the determination of either the

joint probability distribution

P(X 1 = X1,X 2 = X2,..Xn = XnIE)

or, alternatively, one of its marginal distributions on the bases of information consisting of

related marginal and conditional probability distributions.
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2.1 Conventional Probabilistic Reasoning

Classical probabilistic techniques rely on a calculus that is directly derived from the axioms
of probability theory and that, in addition, assumes that all required numerical probability
values are available, either as the result of prior empirical observation (i.e., frequencies of
occurrence) or as the result of elicitation of personal commitment to gambling outcomes

("degrees of belief").

The rules used for this derivation include the additivity axiom of probability

P(A) + P(B) = P(A n B) + P(A U B),

and the celebrated identity of Bayes-Laplace

P(BIA) = P(AIB)P(B)
P(A)

which is a direct consequence of the definition of conditional probability.

The bane of all methods relying on the use of classical probability procedures is the lack
of sufficient information about the required values of conditional and marginal (a priori)
probabilities. Even when assumptions of independence between variable values, i.e.,

P((X = x) A (Y = y)) = P(X = x) P(Y =y),

and conditional independence between variable values, i.e.,

P(X = zIY = y,Z = z) = P(X = xIY =Y),

are used to simplify the required computations [27], the number of variables involved in a
typical approximate reasoning problem lead to the need to estimate a large number (usually

exponentially related to the number of variables) of marginal and conditional probability

distributions.

The difficulties inherent in such estimation required early efforts, such as the develop-
ment of PROSPECTOR [9], to use a combination of probabilistic procedures in combination
with ad hoc or heuristic techniques to overcome problems associated with lack of proba-

bilistic information and to resolve some inconsistencies that occurred whenever estimated

information overconstrained some probability distributions.

Some of these methodological problems can also be traced to the desire to generalize
the network-based, goal-oriented procedures of classical expert systems to situations where

the traditional truth values of classical logic (i.e., true and false) were generalized to a

continuous scale by equating truth-value with probability. The difficulties involved in such

a generalization were soon apparent, as, for example, the transitivity of implication valid

in conventional inference, that is,

If X implies Y, and if Y implies Z, then X implies Z

8



I
I

fails to hold for probabilities; that is, P(YIX) may be high, P(ZIY) may be high, but
P(ZJX) may be zero. Current methodologies based on the use of classical probability

theory to compute the values of a joint probability distribution [22,25] have solved these
methodological problems but, in spite of their deft exploitation of independence assumptions

in probabilistic networks [27], they still face the combinatorial explosion difficulties that are
typical of multivariable problems.

2.2 The Estimation of Probability Distributions

If a purely objectivist viewpoint is taken, it is clear that the probability distributions re-

quired to determine the probability of a hypothesis given availaDle evidence may not be

available. In this view, which we hold, probability can only be the result of experience ac-
cumulated through previous observation, and while, theoretically, absent values may deriv-

able by empirical means, it is often the case that the required experiments are unfeasible

or impractical. This is particularly true in problems involving systems that are not easy

to manipulate or observe (e.g., evaluation of building damage due to earthquakes) or when
the required information is actively denied or obscured by adversaries (e.g., in military

situation-assessment problems).

The orthodox subjectivist view of probability claims, on the other hand, that it is
impossible to ignore the values of probability distributions, as they are always statements
of the degree of belief that certain agents have about the truth of hypotheses. The rationale
supporting the representation of such beliefs by numerical functions having the properties
of a probability function is based on the famous "dutch book" argument [6]. If an agent

is to engage in a gamble involving the truth or falsehood of a certain hypothesis, it will

be irrational for him to choose a combination of bets where he will be sure to lose (a
dutch-book) regardless of the outcome of the gamble turns. Under such conditions, it can

be shown that his personal beliefs (assumed to be numbers) on truth and falsehood of

hypotheses must satisfy the axioms of probability.

Other personalistic axiomatic systems have also been proposed to support the contention

that personal beliefs on hypothetical truth can always be estimated using a single numerical
value[33]. These axiomatic systems have, however, been subject to considerable criticism

both on the basis of their naturality or rationality [37,21] and on the basis of observation of

the actual behavior of rational agents under controlled circumstances [2,10].

Perhaps more controversial is the so-called "pragmatic necessity" argument proposed by

some decision scientists to justify their choice of probability values in the absence of relevant

knowledge. The essential point of this argument emphasizes the decision-oriented nature of
most approximate reasoning problems. It is said that if a decision must be made, when all

empirical information has been considered, then any missing probability values (consistent
with such knowledge) may be chosen because something, after all, must be done. While

not claiming that this procedure replaces objectively determined probability values, it is

9



said that ignorance of such quantities is inconsequential.4 Such light dismissal of required
probability values may have, of course, significant undesirable consequences.

Metaphysical principles, such as the principle of insufficient reason or the maximum
entropy principle, that seek to formalize the choice of single distributions on purportedly
"rational" bases other than empirical knowledge are vulnerable to the same criticism. Re-

gardless of whatever claims some may make invoking pragmatic needs or metaphysics to
develop AI tools to assess complex situations, scientific practice - fundamentally inter-
ested in understanding the world and interacting with it - eschews these practices, relying

instead on experiment-based, hypothesis-testing paradigms.

When it is accepted, at least, that sometimes probability values may not be either
observable or capable of being elicited, it is clear that probabilistic reasoning techniques

must proceed beyond classical probability calculus and develop alternative computation
schemes that do not assume such informational availability. This generalization does not
require, as it is claimed by some, to abandon either the axioms of probability or Bayes'

rule as essential elements of the underlying calculus. Instead, we are simply extending
our computational - rather than our conceptual schemes to determine the effects of our

ignorance on the results of probabilistic analyses.

3 Generalized Probabilistic Reasoning

Current approaches that generalize the calculus of probabilities are, as stated above, based
on generalization of computational rather than conceptual schemes. As such, the qualifier
"non-Bayesian" that is sometimes associated with them, is basically incorrect; its validity

is limited to the current skepticism, among orthodox subjectivists (often called Bayesians),
about their necessity. All of these schemes are based on variations of the same idea: the

determination of intervals [36] where unknown probability values must lie.

3.1 Interval-valued Probabilities

General formalisms for the representation and manipulation of interval probability bounds
have been investigated by Kyburg [20], who also studied issues germane to the relations
between this general formulation and the calculus of evidence of Dempster-Shafer [19]. The
central notion in his treatment of probabilistic knowledge is that of "convex probabilities"

used to describe the set of probability values in multidimensional space where possible values

of the underlying distributions lie.

Although general interval-valued probability is preferable to other schemes, which are
limited by their theoretical representation capabilities, the corresponding calculus of inter-
vals is hampered by the difficulties associated with the storage and processing of a large

41t is important to point out, however, that many decision scientists rely, under these circumstances, on
analyses of the sensitivity of their results to such convenient assumptions.
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number of probability bounds. If m ground propositions are identified as the initial gen-

erators of a Carnapian universe, it may be necessary to store and manipulate 22"' bounds

corresponding to all subsets of this universe. These difficulties have effectively limited the

application of interval-based approaches in practice.
Practical schemes that are amenable to computer-based implementation, on the other

hand, do not have the same generality. In general, these approaches rely on manipulation

of intervals that have been generated by knowledge of probability values for some subsets

that are then used to determine interval bounds for the probabilities of subsets of interest

(i.e., inner or lower probabilities). Among such schemes relying on the use of lower proba-

bilities, the calculus of evidence of Dempster-Shafer has found the largest acceptance in the

approximate reasoning community.

3.2 Evidential Reasoning

Evidential reasoning is the name of the methodology based on the Dempster-Shafer calculus

of evidence. 5 The basic structures of the calculus of evidence were introduced by Demp-

ster in 1966[7]. Shafer [34] proposed in 1976 the use of those constructs to represent and

manipulate evidence. The methodology was first applied to the solution of approximate rea-

soning problems in artificial intelligence at SRI International [12,23]. Although the calculus

of evidence is often regarded as being non-Bayesian (meaning primarily nonprobabilistic),

its original derivation by Dempster is fully consistent with conventional probability theory.

Recent results by Ruspini 130,31] have further supported this contention.
Evidential reasoning is based on the representation of probabilistic evidence by means of

mass functions or basic probability assignments. Mass functions assign a nonnegative mass

value to every subset in a space of possible solutions (or possible worlds). The sum of all

these mass assignments over the set of all such subsets (called the power set) is always 1.

Evidential reasoning is advantageous in that it allows representation of the degree of

support provided by evidence toward the truth of a hypothesis without requiring that such

support be split among more specific propositions implying that hypothesis. For example, in

a criminal investigation case, evidence may indicate that the perpetrator is blonde without

actually identifying his or her identity. In such a case, a mass function that assigns a mass

of 1 to the set of all blonde suspects and 0 to all other subsets is used to represent the

evidential weight. Note that in this case the sum of the masses for all sets consisting of a

single blonde suspect (0) is different from the mass assigned to the set of all blonde suspects

(1). Had masses corresponded to actual probabilities of guilt, those two quantities should

have been the same. 6

Closely associated with the notion of mass are the belief and plausibility functions defined

5 The reader must be warned about a recent tendency in the literature to use the expression "evidential

reasoning" as a synonym of "approximate reasoning."
6 For this and other reasons it has been claimed that evidential reasoting is non-Bayesian or nonproba-

bilistic. As we will see below. this assessment is based on incorrect interpretation of the meaning of mass

functions.
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by
fBel(A) m(B)

BCA

and
P1(A)= m m(A).

BnAA@

The belief function is a measure of the total support provided by evidence toward the truth
of a particular proposition, while the plausibility function measures the degree by which
the evidence fails to refute it.

3.2.1 Logical Bases for Evidential Reasoning

Our possible-worlds approach to the description of probabilistic reasoning may be extended
to develop a formal foundation for the basic functions and structures of evidential reasoning.
This extension is based on the use of a form of modal logic, called epistemic logic, introduced
to deal with issues that are relevant to the states of knowledge of rational agents. The insight
provided by this characterization has helped to clarify a number of fundamental issues in
evidential reasoning, notably in the areas of semantic characterization of the notion of
evidential independence and in the derivation of schenies for the combination of dependent
and conditional evidence.

Epistemic logic is, like conventional Boolean logic, a two-valued logic where each propo-
sition is assigned one and only one of the classical truth values, i.e., true or false. In
epistemic logic, however, propositions may be not only true or false, but may also be known

to be true or false, or, alternatively, they may not be known to be either true or false.
Rather than introducing new scales of truth, as is done in multivalued logic [29], epistemic
logic resorts to a representation scheme where knowledge of a proposition is represented by
means of another, related, proposition.

A rational agent's state of knowledge about the truth of a proposition is represented by
means of a spo-cial operator K, used as a prefix to symbols describing other propositions.
For example, knowledge of the truth of a proposition p is denoted Kp, while -,Kp symbolizes
lack of such knowledge.7 The discussion of epistemic systems also requires differentiation be-
tween propositions that describe certain properties of the real world (objective propositions)
and propositions that include one or more epistemic operators (epistemtc propositions).

In our investigation, we have employed a particular form of epistemic logic proposed
by Moore [24] to deal with problems of reasoning and planning in artificial intelligence
applications. The axiom schemata for such a modal system is:

Al. Axioms of the ordinary propositional calculus.
A2. Kp - p (If a proposition is known to be true, then it is true.)

7 The meaning of the notation -Kp should not be confused with ignorance about the truth of p represented

by -Kp A -,K(-p), i.e., neither p nor its negation is known to be true.
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A3. Kp -. KKp (Positive introspection: If a proposition is known to be true, then

it is known that it is known to be true.)

A4. K(p - q) -- (Kp - Kq) (Consequential omniscience: If it is known that p

implies q, then knowledge of the truth of p implies knowledge of the truth

of q.)

A5. If p is an axiom, then Kp is true.

A6. -,Kp -- K-Kp (Negative Introspection: If the truth value of a proposition is

unknown, then such a state of ignorance is known.)

The set of all possible truth assignments to the sentences of a modal propositional
system that satisfy these axioms is called an epistemic universe (Figure 3) - a concept

that generalizes that of the Carnapian universe. Each member of this universe is a possible

p q -rs-t

Kp-Kq -, K--, q K--r
-- _K-, t

Figure 3: The Epistemic Universe.

world that represents both a particular state of the world and the state of knowledge that

certain rational agents have about it. In this universe two classes of subsets are of special

importance.

The first class consists of subsets of possible worlds where some objective proposition p

is true. These subsets are called truth sets. The truth set for a proposition p is denoted

t(p).

The second class consists of subsets having as members possible worlds where some

objective proposition p is known to be true. These subsets are called support sets, with

k(p) denoting the support set for the objective proposition p.
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Closely related to support sets are the epistemic sets, which partition the epistemic

universe into subsets characterized by the same knowledge pattern. Each such epistemic set

may be associated with a proposition p that represents the best or most specific knowledge
available in each possible world within that epistemic set (this proposition is the conjunction

of all known propositions in each world). Epistemic subsets are identical to the elements of

the quotient space of the epistemic universe by the accessibility relation. The accessibility

relation captures the informal notion that, for all we know in a possible world w, we might
just as well be in an accessible or conceivable world w'. The epistemic set corresponding to

an objective proposition p is denoted e(p).

Several important set-theoretic relations, illustrated in Figure 4, exist between members

k (p) es

Figure 4: Relations between Special Sets in the Epistemic Universe.

of these classes:

" The support set for a proposition p is the union of the (disjoint) epistemic sets corre-

sponding to propositions q that imply p, i.e.,

k(p) U e(q)
q-p

In plain words, if p is known to be true, it is either because that is the "best available

knowledge," or because such "most specific knowledge" is that another proposition q,

that implies p, is true.

" The support set k(p) is the largest support set (in fact, it is the largest arbitrary union

of epistemic sets) included in the truth set t(p).

Because epistemic and support sets are always uniquely associated with an objective

proposition, their probabilities may be thought of also as measures that assign a unique

nonnegative value to each such objective proposition.
If P is such a probability, the functions

m(p) = P(e(p)),

Bel(p) = P(kip)),
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are related by the basic identity

Bel(q) = r

which is central to the calculus of evidence [34].
Probabilities over the epistemic algebra (and their associated functions) represent the

effect of uncertain evidence on a rational agent's state of knowledge. The corresponding
probabilities defined on the truth algebra of the truth sets t(p) can be interpreted as the
degrees of likelihood (usually unknown) of objective propositions.

Because the largest member of the epistemic algebra that is contained in the truth set
t(p) is the support set k(p), it follows (from standard results on lower- and upper-probability
functions) that any extension of a probability P, defined over the epistemic algebra, to a
probability P defined over the truth algebra must satisfy the inequality

Bel(p) < P(t(p)) < Pl(p),

where Pl(p) is the plausibility function of the Dempster-Shafer calculus of evidence. Fur-
thermore, these bounds are the best possible and cannot be improved. In other words,
knowledge of actual probability values over some subsets provides bounds, which may not
be improved except by incorporation of additional evidence - on the probability values of
other sets.

Issues related to the combination of evidence are readily modeled by considering another,
more complex, set of possible worlds called the product epistemic universe. The members of
this set are, as was the case in previous epistemic universes, possible worlds, that is, functions
that assign conventional binary truth values (i.e., true or false) to certain propositions of
interest. The difference in this case consists in the use of multiple epistemic operators
K 1, K2 ,... representing the knowledge possessed by several rational agents about the truth
of objective propositions or of other epistemic propositions.

Constraining ourselves momentarily to situations involving two different rational agents
A1 and A2 , each ignorant of the knowledge of the other, their common (or integrated)
knowledge may be modeled by introduction of a third, nonindexed, epistemic operator K.
It is assumed that the knowledge available to this third agent is the sole and exclusive result
of the combination of the knowledge available to A1 and A2 without any other additional
sources of information. This assumption is formally modeled by means of the following
knowledge combination axiom:

(KC) Kp is true if and only if there exist sentences pi and P2 such that Kip1 and K2P2

are true, and, in addition, such that pi A P2 * p.

If the epistemic sets corresponding to the operators K, K1, and K 2 are denoted by
e(p), el(p) and e2(p), respectively, the following important set-equation, relating all types
of epistemic sets, is the basis for the derivation of a variety of combination formulas:

e(p)= U (1p)e(2)
pl Ap2=p
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from which, under certain assumptions of probabilistic independence, the Dempster combi-
nation formula

m(p) = A mAPOM2(P2),
Pi AP2=p

is readily derived.

3.2.2 Semantic Issues of Evidential Reasoning

Using an objectivist interpretation of the concept of probability, the author has formulated
a Kripke-type model [17] that explicates basic probability assignments as the principal out-
put estimated by a generalized statistical experiment. This model-theoretic formalism also
sheds light on the general character and nature of probabilistic knowledge and on the mech-
anisms used to capture it. Rather than providing a formal characterization of the Kripkean
formulation, we will informally describe a general model of a statistical experiment that
provides insight into the nature of the theoretical structures discussed further below.

The informal model that serves as our point of departure is illustrated in Figure 5,
which presents the typical steps involved in the collection of statistics about the behavior of
a real-world system. A statistical experiment, as illustrated, commences with a mechanism

L PossIBLE WORLDS i

Acceptable ? NO
NO (Reject)

~YES

SANALYZE

i Most Specific Knowledge
ENUH i1"S?$-FICLASSIFY AND C OUNT

YES PROBABILITY ESTIMATE

Figure 5: The General Statistical Experiment.

for the generation of samples (i.e., sequences of possible worlds that reflect the relative
frequency of occurrence of such states of affairs in actual experience).

Each such sample is then examined for compliance with some experimental criteria used
to determine if the corresponding possible world satisfies the criteria used for the generation
of the desired statistical distribution. In other words, we are interested in estimating a
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conditional probability, and this test determines whether or not the condition is met. Future
usage of the generated statistical values is valid solely if available evidence (i.e., a true
proposition about the world) corresponds exactly to the condition used in the generation
of the statistics.

It should be noted that the nature of the device (sensor) used to make this determination
is of extreme importance in determining whether the generated statistics correspond to an
epistemic probability over the truth set t(p) (e.g., if the sensor is capable of reliable binary
discrimination between samples where p is true and samples where p is false), or over a
support set k(p) corresponding to a rational agent that may or may not be that involved
in the next analysis step (e.g., some sensor, not necessarily that used to further analyze the
sample, is used to determine if p is valid; its failures, however, do not mean that p is false).

If the sample satisfies the conditions defining the statistical distribution being estimated,
then the next step consists in the determination of properties (i.e., propositions that are
true) in this particular possible world. The conjunctions of these propositions are the "most
specific knowledge" available for that sample. In classical statistical setups, the analyzing
devices that perform such a determination are designed so as to determine if the sample
falls into one of several exclusive categories. For example, in clinical trials, the result of
each trial is typically classified on the basis of its success into several disjoint sets (e.g.,
"success" or "failure"). In more general experiments, however, the ability to determine
"most specific knowledge" may be severely limited and the sample will be placed into one
of several classes that may be overlapping. For example, if the samples correspond to
medical patients having certain types of afflictions (e.g., the "condition" is that they have a
renal or a hepatic disorder), available knowledge may indicate that a particular patient has
a disorder within a certain class (e.g., kidney disease), while failing to determine a specific
disease.

If each sample is so classified and the results of successive analysis are tabulated as
frequencies, the resulting distribution is a mass distribution in the sense of Shafer rather
than a con,/entional probability distribution. When the differences between probability
distributions and their sample-based estimates (which are often the source of second-order
probability distributions) are ignored, the computed frequencies may be considered to be the
same as a nonconventional distribution that corresponds to an epistemic probability. The
rational agent in this distribution is the statistical experimenter who has a "most specific
knowledge" for each possible world (actually for a relevant sample of such worlds). 8

The knowledge of the approximate reasoner, on the other hand, is limited to knowledge of
(aggregated) results of the statistical experiment coupled with knowledge of the condition
validating the use of the statistical (epistemic) distribution (i.e., the condition used to
determine if the samples were acceptable). Note that this distribution generally induces

'Note that in classical experimental setups, where the conditions of the experiment may be closely
controlled, the most specific knowledge corresponds to the determination of the actual possible world where
the sample lies. In those cases, the sample frequencies estimate probability values for an actual probability
distribution.
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bounds on the probability of truth sets. The latter, however, are needed to solve typical
decision-making problems.

In closing our description of the calculus of evidence, it is important to point out that, in
addition to our objectivist model, subjectivist interpretations of belief and mass functions5 have been proposed by Smets [35] and Jaffray [16]. The formulation of Jaifray is partic-
ularly attractive in that it provides a simple, direct generalization of the basic results of
DeFinetti [6] on the probabilistic nature of degrees of belief.

4 Possibilistic Reasoning

I Possibilistic approaches produce, as is the case with their probabilistic counterparts, so-

lutions to problems that are a modified formulation of the impossible (or, at least, very3 difficult) task of determining hypothesis validity. The emphasis, however, is not on de-
termination of the frequency of instances where, under similar conditions, the hypothesis
will be true or false. Possibilistic methods seek to produce unequivocal answers to other

questions that are similar in some sense to those of interest to the system analyst.
For example, in a medical diagnosis problem, a probabilistic method may answer the

question "Does the patient have disease D?" by means of a probability value that fails

to indicate whether the disease exists or not but that allows evaluation of the chances of
successful treatment. A possibilistic method, on the other hand, may answer the same
question by responding unequivocally (i.e., true or false) to the modified query "Does the

patient have a disease of type D* ?" where D' stands for a class of diseases that are similar,
in some sense, to the disease D.3Similarity between propositions (sometimes regarded as the "degree of ease" by which
a proposition describes a particular state of affairs) may be used as the basis for explaining
the basic concepts and structures of fuzzy set theory and its logic-oriented extensions.

A fuzzy set f [41] is defined by its membership function mapping elements from a universe
U to the [0, 1] interval of the real line

3 pI: U- [0, 1].

The concept of membership function generalizes the notion of characteristic function of a

conventional set. For a particular element z of 'U, the value pf(x) represents the degree
of membership of x to the fuzzy set f. Unlike conventional sets where elements either
belong or do not belong to a set, fuzzy sets - representing vague concepts - admit partial

membership ranging from 0 (nonmembership) to 1 (full membership).
Fuzzy sets may also be described by means of their a-cuts consisting of all members

Swith a degree of membership greater than or equal to a value a

f(a) = {" pf(X) _ a)

Using this important concept, fuzzy sets may also be regarded, from a logical viewpoint, as
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a set of related indexed propositions representing different levels of conceptual applicability

to a particular state of affairs.

The set-theoretic operations (union, intersection, complementation), originally proposed
by Zadeh [41], generalize the corresponding operations for conventional sets:

Jpfng(x) = min[pf(x),pg(x)],

pfq(x) = maxjj.f(x),p 9q(x)j,

where x is a member of the universe U.

An important concept in fuzzy set theory is that of fuzzy relation, which generalizes
the conventional set-theoretic notion of relation. If U and V are universes, then a fuzzy

relation between U and Vis a fuzzy set in the set of all pairs (u, v) (or cartesian product),

where u is an element of U and where v is an element of V1. One of the main reasons for

the importance of fuzzy relations is their role in the representation of vague relationships

between variables, e.g.,

If u is high, then v is small.

Approximate reasoning systems used in possibilistic systems u. "-,v -- I tions to represent

inferential rules in their knowledge bases.

4.1 Possibility Theory

Possibility theory is based on the representation of vague information as elastic constraints
on the possible values that may be attained by a variable. For example, if information is

available indicating that "James is rich," a possibilistic approach represents this fact as a

possibility distribution on the values of a variable describing James's wealth (called here

James-net-worth) in the form

II James- net-worth = rich

where rich is a fuzzy set defined over the real numbers intended to describe for each possible

value of James-net-worth the degree of ease by which the concept "rich" agrees with that

particular net worth.

In general, if a variable X takes values over a universe 'U, then a linguistic expression of
the form "X is F" will be formally translated by a possibilistic assignment IHx = F, such

translation being denoted as

X is F-- Hx = F,

meaning that the values that may be attained by X are constrained as specified by the fuzzy

set F. Because vague statements in natural language are translated, in possibility theory,

into formal statements that assign a fuzzy value to a variable (as opposed to assigning
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a precise value as would be the case for a precise statement), such a variable is called a

linguistic variable.

Other translation rules are used to derive representations for more complicated linguistic
statements, such as "X is F and Y is G" or "Q Xs are F" (where Q is a generalized quantifier3such as "most"), are the basis of an uncertainty calculus that is complemented by certain

inferential rules that allow derivation of possibilistic constraints for certain variables as a

function of constraints on related variables. Among these rules the most important is the

"generalized modus ponens" that produces an approximate conclusion

Bly =G',

meaning "Y is G", from knowledge that

I fIx = F',

meaning that "X is F", and thatny/x = (F- ),

i.e., "If X is F, then Y is G".
The qualifier "generalized" is used to indicate the important fact that, unlike classical

modus ponens, this inference rule allows a rule to be used even when available facts, F', do3 not match precisely the antecedent of the rule (i.e., F). The conclusion G' in such a case

differs also, in general, from the consequent of the rule, being a more general or less specific

* constraint than G.

4.2 Similarity Relations and Possible Worlds

3A similarity relation in a set X is a function that assigns a real value between 0 and I to every

pair of objects from X. Similarity relations play an important role, recently investigated

in detail by the author [32], in the interpretation of the basic concepts and structures of

possibility theory. The results of this research show that the notion of possibility may be
explained in terms of a similarity function defined over a universe of possible worlds. This

similarity defines a metric that quantifies the extent of resemblance between pairs of states

(as evaluated from the viewpoint of the particular problem being considered). For example,
in a planning problem, the planner may use such measures to describe the extent by which3 the plan's effects resemble some planning goal or objective.

The value S(w, w') that a similarity relation assigns to a pair of worlds (w, w') in a
universe U is a numerical9 measure of the extent by which propositions that are true at

w may be expected to hold true at w. A similarity value of I for S(w, w') (the highest
possible) indicates that, from the point of view of the propositions used to construct our

S"The requirement that similarities be numerical may be relaxed considerably. We shall confine our
exposition, however, to (0, 1-valued similarities for the sake of clarity.

* 20

I



universe, both worlds are indiscernible, i.e., that the same propositions are true in w and in

w'. A value of 0, in contrast, tells us that knowledge of propositional truth in w does not
have any predictive value over truth-values in w' (and vice versa).

Unlike probability values that represent the behavior of a system and, as such, are a
property of the system (the same may be said, under an subjectivist interpretation, of

degrees of belief as a property of a rational agent), similarity functions are arbitrarily
defined (but not necessarily subjective) scales that facilitate the description of the degree
by which an object has some property. Thus, similarities are as useful (and arbitrary) as
any other metric scale; their utility is essentially a function of the degree by which the scale

distinguishes between different states of a system and the degree by which similarity scales

that are associated with different properties (e.g., the pressure and volume of a perfect gas)

are related to each other by means of actual physical laws (or facilitate the expression of
such laws).

Simply stated, similarities provide the measurement sticks that must be employed to
characterize, in an approximate fashion, the state of the real world. Correspondingly, ap-
proximate inference rules describe how similarity from some respect (e.g., resemblance of the

actual state, pressure = 80 kg/m 2 , to some prototypical situation, pressure > 100 kg/m 2),
relates to similarity from another viewpoint (e.g., temperature > 200'C), by means of a

fuzzy relation (e.g., "If the pressure is high, then the temperature is high").

4.2.1 Properties of Similarities: Triangular Norms

A similarity function S defined on a possible-world universe 'U may be regarded as a gen-

eralization of the modal-logic notion of accessibility or conceivability [15], by introduction
of multiple binary relations R& between possible worlds (one for each value of a between 0

and 1), defined by
R,(w, w') if and only if S(w, w') > a.

Using these relations, we may say that conditions in w are possible to some degree in w' on
the basis of the value of S(w, w') (generalizing the classical definition of the modal operator
for possible truth).

To assure that the function S has the properties of a similarity function, a number of
properties must be required to assure that S is truly a measure of a resemblance between

objects. Among these, the requirements that S(w, w) = 1 (i.e., the similarity between any

world and itself is as high as possible), and that S(w, w) = S(w', w) (i.e., w resembles w'

as much as w' resembles w) are rather natural.

Less obvious than those properties is a form of transitivity that may be motivated by
noting that if S were to assign values of similarity to the pairs (w, w') and (w', w") that

make both w and w' highly similar and w' and w" also highly similar, then it would be
surprising if w and w" did not resemble each other at all. Any function claiming to measure

resemblance must be such, therefore, that the similarity value S(w. w"), is bounded by
below by a function of S(w, w') and S(w', w"), expressed by means of a binary operation ®
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in the form
S(w, W") > S(, W') @ S(w', w"),

which is graphically illustrated in Figure 6.

W W

a

Figure 6: Transitivity of the Similarity Relation.

In terms of accessibility relations, this condition is a generalization of the classical ex-

pression for the transitivity of R, i.e.,

RC RoR,

to the form

,,,C R oR6, for all 0< a,/5 1,

involving the multiple relations R,.

Imposition of reasonable requirements upon the operation ® immediately shows it to be

a triangular norm, introduced here by means of arguments related to metrics and similarity,

but of extreme importance, otherwise, in multivalued logic [38]. Important examples of this

operation include the functions

aab= min(a,b), a®b= max(a+b- 1,0), and a®b= ab,

called the Zadeh, Lukasiewicz, and product triangular norms, respectively.

If a function 6 is defined, between pairs of possible worlds, by means of the relation

b = 1-S,

then it may be seen that when ® is the triangular norm of Lukasiewicz, 6 is an ordinary

metric or distance, satisfying the well-known triangular inequality

6(w, w") _< b(w, w') + 6(w', w").

When ® is the Zadeh triangular norm, however, the transitivity property is equivalent to

the more stringent condition

6 (w, w") <_ max ( 6(w, w'), 6(w', w") )

stating that 6 is an ultrametric distance.
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4.2.2 Logic and Metrics: The Generalized Modus Ponens

Metric structures, introduced by means of similarity relations, provide a mechanism for the

characterization of logical relations by means of structures that stress proximity rather than
subset-membership relations between possible worlds.

If a typical "conditional" proposition in Boolean logic, i.e., " If q, then p," is thought of
as a statement that every world where q is true is one where also p is true, then it is clear
that implications are equivalent, as is well known, to a relationship of inclusions between

possible worlds: the subset of q-worlds is a subset of the set of p-worlds.

Statements of inclusion between subsets of possible worlds may, however, also be char-
acterized in metric terms by stating that every q-world has a p-world (i.e., itself) that is
as similar as possible to it. Logic structures, however, allow us only to say that either q

implies p, or that q implies its negation -,p, or that neither of those statements is true.
Similarity relations, by contrast, permit the measurement of the amount by which a set

must be "stretched" (as illustrated in Figure 7) in order for an inclusion relation to hold.

Figure 7: Extended Set Inclusion.

One such measure of inclusion is provided by the function I (called the degree of impli-

cation), defined for pairs of propositions p and q by the expression

I(pjq)= inf supSww)
w'1q wfrp

which is related to the well-known Hausdorff-distance, introduced in metric space theory to

measure distance between subsets as a function of the distance between their elements.
Note, in particular, I(p J q) - 1, then every q-world is similar a p-world that is logically

"indistiguishable" from it (i.e., implication), while if both I(p Iq) and I(q IP) are equal to
1, then p and q are logically equivalent.

From this perspective, if inferential rules, such as the modus ponens, are thought of as

the tools of an "implicationar" calculus, i.e., "If q is a subset of p, and r is a subset of q, then
r is a subset of pr", then possibility theory generalizes such calculus by deriving relations
between neighborhoods of certain subsets of possible worlds (actually between their sizes).

The generalized mnodus ponens of Zadeh [39] is a direct consequence of the transitivity
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property

I(pj r) > I(pIq)®I(qjr),

of the degree-of-implication function, which is illustrated in Figure 8.

Figure 8: The Generalized Modus Ponens.

Derivation of the actual form of the generalized modus ponens from similarity-based

structures, which involve possibility distributions, is outside of the scope of this paper.

It will suffice to say here that possibility distributions measure the similarity, from the
restricted viewpoint (called marginal similarity) of one or more variables, between certain
subsets of possible worlds, and that fuzzy inference rules provide metric knowledge about

inclusion relations between such subsets.

In closing, it is important to stress that similarity relations justify the use of possibilistic
logic as a form of "logical extrapolation" exploiting similarities between possible worlds.

The topological and metric structures that are introduced to enhance our basic Carnapian
universe are of a substantially different nature than the set measures exploited by probability
theory that, typically, measure the "sizes" of the complementary subsets of possible worlds

where a proposition is true or false, respectively.

5 Nonmonotonic Logic and Commonsense Reasoning

Nonmonotonic logic and commonsense reasoning are also concerned with the problems
caused by lack of the information that is required to deduce the truth value of certain

hypotheses. As is the case with approximate reasoning methodologies, these concerns go
beyond considerations about the theoretical ability to produce the required knowledge,

encompassing also the practical issues involved in such production. To use a most famous

example, to deduce that a particular bird flies requires knowledge that such bird is not a

penguin or ostrich (at least, a nonflying ostrich), that he is not sick, dead, and so forth.

The production and storage of this information imposes heavy burdens on both users and

systems.
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5.1 Nonmonotonic Logic

Faced with the impossibility of collecting such information, nonmonotonic logic systems [28,
13,8] are also forced to deal with a subset of possible solutions. Rather than relying on
descriptions of eztensive properties of such set, as done by approximate reasoning methods,
nonmonotonic procedures choose one of its members. If subsequent information eliminates
that choice as a candidate, then one or more of the "defeasible" assumptions are retracted.

Use of the term nonmonotonic to characterize this type of reasoning is intended to reflect
both the nature of the variation of truth values and the corresponding changes in the set of
true statements as the consequence of the assimilation of new information (classical logic

methods always add new truths to the set of existing theorems, thus leading to "smaller"
sets of possible worlds).

The majority of nonmonotonic logic techniques rely on minimality arguments to choose
possible worlds among a set of potential solutions. The general idea of these methods
consists in the identification of a "least exceptional" world, that is, a world where the only
objects that satisfy certain predicates are precisely those that are known to do so. Recent
work [3] has extended these ideas to the approximate reasoning domain by consideration
of numerical degrees of exceptionality.

Similar commonsense reasoning techniques [28], notably default reasonzng, are also re-
lated to probabilistic reasoning. Default assumptions (such as the hypothesis that, by
default, birds fly) can be thought of as stating that the assumption, given our current state
of knowledge, has a high probability of being true. Known characteristics of default rea-

soning, notably the lack of transitivity of the modus ponens, have equivalent counterparts
in probabilistic reasoning.

Studies of problems where knowledge is expressed by high probability statements [26,1]
and developments in possibilistic reasoning techniques concerned with the manipulation of
certain generalized quantifiers (e.g., "most") [40] and with linguistic statements of prob-
ability (e.g., "usually") [43] have also shown substantial similarities between default and
probabilistic reasoning.

5.2 Qualitative Process Theory

A number of recent research efforts [11,14,18] have been oriented toward the development
of methods and techniques for the description of qualitative aspects of system behavior.
The basic idea of these qualitative or "naive" physics approaches is the development of a
computer-assisted understanding of the major behavioral characteristics of systems of major
practical interest.

These efforts have emphasized the use of imprecise descriptions in order to avoid un-
necessary numerical detail that, according to their proponents, would complicate rather
than aid understanding of causal relationships and system behavior. This concern is simi-
lar to that whicht originally motivated the introduction of fuzzy set theory, which sought
to provide tools to produce understandable descriptions of large and complex systems by
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avoidance of unnecessary descriptive detail.
The relationships between the theories go considerably beyond their common goals and

objectives as qualitative process theory has made substantial use of imprecise scalar-variable
scales that recognize three possible classes of values: negative, zero, and positive. These
values are special cases of linguistic variables, introduced in fuzzy set theory [42], which

provide for the qualitative description of scalar variables using formal representations of
linguistic qualifiers such as large, very large, and small. The relationship between the
theories is the current object of substantial attention.

6 Conclusions

Possible-world semantics provides a perspective into approximate reasoning problems and

methods that helps clarify many of the fundamental issues surrounding the nature and
usefulness of different methodologies.

Through use of constructs based in possible-world formalisms, it is easy to see that all
existing techniques produce correct and sound descriptions of the properties of the subset

of possible worlds that are consistent with observed evidence rather than, as sometimes
thought, ad hoc characterizations of an ambiguously relaxed notion of truth.

Furthermore, these formalizations underscore the basic relations between probabilistic
techniques showing that the Dempster-Shafer calculus of evidence is fully consistent with
the theory of probability. By contrast, these models also reveal basic, substantial differences

between probabilistic and possibilistic methods - the former related to set measures that
characterize the frequency of occurrence of some event, and the latter linked to notions of

similarity between possible situations. From this viewpoint it is evident that possibilistic

and probabilistic techniques should not be regarded as competing tools but, rather, as
complementary techniques seeking to describe different properties of sets of possible worlds.

Finally, it is important to point out that possible-world semantics also helps to clarify the
characteristics and purposes of nonmonotonic and commonsense approaches to deductive

inference.
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Abstract

This note presents a formal semantic characterization of the major concepts and constructs of
fuzzy logic in terms of notions of distance, closeness, and similarity between pairs of possible worlds.
The formalism is a direct extension (by recognition of multiple degrees of accessibility, conceivability,
or reachability) of the major modal logic concepts of possible and necessary truth.

Given a function that maps pairs of possible worlds into a number between 0 and 1, generalizing
the conventional concept of an equivalence relation, the major constructs of fuzzy logic (i.e., condi-
tioned and unconditional possibility distributions) are defined in terms of this generalized similarity
relation using familiar concepts from the mathematical theory of metric spaces. This interpretation
is different in nature and character from the typical, chance-oriented, meanings associated with prob-
abilistic concepts, which are grounded on the mathematical notion of set measure. The similarity
structure defines a topological notion of continuity in the space of possible worlds (and in that of its
subsets, i.e., propositions) that allows a form of logical "extrapolation" between possible worlds.

This logical extrapolation operation corresponds to the major deductive rule of fuzzy logic
-the compositional rule of inference or generalized modus ponens of Zadeh-an inferential opera-
tion that generalizes its classical counterpart by virtue of its ability to be utilized when propositions
representing available evidence only match approximately the antecedents of conditional proposi-
tions. The relations between the similarity-based interpretation of the role of conditional possibility
distributions and the approximate inferential procedures of Baldwin are also discussed.

A straightforward extension of the theory to the cae where the similarity scale is symbolic
rather than numeric is described. The problem of generating similarity functions from a given set of
possibility distributions, with the latter interpreted as defining a number of (graded) discernibility
relations and the former as the result of combining them into a joint measure of distinguishability
between possible worlds, is briefly discussed.
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1 INTRODUCTION

This note presents a semantic characterization of the major concepts and constructs of fuzzy logic
in terms of notions of similarity, closeness, and proximity between possible states of a system that
is being reasoned about. Informally, a "possible state" (to be formalized later using the notion of
"possible world") is an assignment of a well-defined truth-value (i.e., either true or false) to all
relevant declarative knowledge statements about that system.

The primary goal that guided the research leading to the results presented in this work has been
one of conceptual clarification. A great deal of energy has been directed in past few years to debating
the methodological necessity and relative merits of various apprcdmate reasoning methodologies. As
a result of these exchanges, the need to consider certain nonclassical approaches, has been questioned
on a variety of bases.

Recognizing the need for the development of sound semantic formalisms that shed light on the
nature of different approaches, the author has pursued, in the past few years, a line of theoretical
research seeking to describe various approdmate reasoning methodologies using a common frame-
work. These investigations have recently shown the close connection between the Dempster-Shafer
calculus of evidence [35] and epistemic logics. This relationship was elucidated by straightforward
application of conventional probabilistic concepts to models of knowledge-states that distinguish
between the truth of a proposition and knowledge (by rational agents) of that truth. Central to
this development is the notion of "possible world" used by Carnap [6] to develop logical bases for
probability theory.

The same central notion of possible state of affairs is also the conceptual basis of the results
presented in this note, which is aimed at establishing the semantic bases of possibilistic logic with
emphasis on the study of its possible relations and differences, if any, with probabilistic reasoning.

The results of this investigation clearly show that possibilistic logic can be interpreted in terms
of nonprobabilistic concepts that are related to the notions of continuity and proximity. The major
functional structures of fuzzy logic, i.e., possibility and necessity distributions, may be defined in
terms of the more primitive notion of similarity between possible states of a system using constructs
that are the direct extension of well-known concepts in the theory of metric spaces. The topological
metric structure that is so defined may be used to derive a sound inferential rule that is a form
of logical "extrapolation." This rule is also shown to be the compositional rule of inference or
generalized modus ponens proposed by Zadeh [53). Conversely, possibility distributions--expreasing
resemblance from some specific regard-may be used to derive the actual similarity functions--
discerning between possible worlds from the joint viewpoint of several respects.

The constructs that are used to derive the interpretation presented in this note are formally,
structurally, and conceptually different from those that explain probabilistic reasoning, in either
its objective or subjective interpretations, irrespective of methodological reliance on interval-based
approaches to represent ignorance. The latter clas of methods--measuring the relative proportion

'It is important to rewk that the scope of this work is limited to the most fundamental concepts and constructs

of fuuy logc without examining volated notions sudh as, for example, generalised quantifiers.
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of (either observed or believed) occurrence of some event-are based on the mathematical notion of
set measure, while the former-seeking to establish similarities between situations that may be used
for analogical reasoning-are related to the theory of distances and metric spaces.

This presentation of the relationships between similarity-based concepts and possibilistic notions,
while grounded on a formal treatment that is based on rigorous logical and mathematical formalisms,
will be kept at a level that is as informal as possible. The purpose of this presentation style is
to facilitate comprehension of major ideas without the clutter that would need to be otherwise
introduced to keep matters strictly precise. For this reason, we will refrain from formal introduction
of structures and axiom schemata, that, although correct and proper, may encumber understanding
of the basic concepts.

Before we proceed to the detailed consideration of semantic models, I must briefly remark on
the epistemological implication of these developments. The present interpretation is not claimed
to be the only one that may be advanced to define the notion of possibility in terms of simpler
concepts, nor do I claim that it may not be sometimes possible, even desirable, to model possibilistic
structures from other bases. My intent is not to prove the conceptual superiority of one approach
over another or to argue about the relative utility of different technologies. Rather, I hope that these
results have contributed to establish the basic conceptual differences to the treatment of imprecise
and uncertain information that are inherent in probabilistic and possibilistic methods; the former
oriented toward quantifying believed or measured frequency of occurrence, and the latter seeking to
determine propositions-implied by the evidence-that are similar, in some sense, to a hypothesis
of interest. In other words, beyond accidental domain-specific relations, both types of methods are
needed to analyze and clarify the significance of imprecise and uncertain information.
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2 APPROXIMATE REASONING AND POSSIBLE WORLDS

Our point of departure is the model-theoretic formalisms of modal logics. Let us assume that
declarative statements about the state, situation, or behavior of a real-world system under study
are symbolically represented by the letters of some alphabet

fp, q , r, ... .1 ,

which are combined in the customary way using the logical operators -',V,A,--. and .- ' (to be
interpreted with their usual meanings) to derive a language .Y(i.e., a collection of sentences).
Furthermore, we augment this language by use of two unary operators N and II, called the ne-
cessity and possibility operators, respectively, having usage governed by the rule

If 0 is a sentence, then No and 1o are also sentences,

introducing the ability to represent different modalities for the truth of propositions.

A model for this propositional system is a structure consisting of three components:

1. A nonempty set of possible worlds U introduced to represent states, situations, or behaviors
of the system being modeled by our sentences. In what follows we will refer to this set as the
universe of discourse, or univeme, for short.

We will also need to consider a nonempty subset ff of the universe U, which is introduced
to model the set of conceivable worlds that are consistent with observed evidence. This set
(possibly equal to the whole universe U) will be called the evidential set. Throughout this
note, we will assume that evidence about the world is always given by means of conventional
propositions that allow to determine, without ambiguity, whether a possible world either is or
is not a member of the evidential set.2

2. A function (called a valuation) that assigns one and only one of the truth values true or false
to every possible world to in the universe U and every sentence 0 in the language. Assignment
of the truth-value true to a pair (w, 0) will be denoted tv - (i.e., 0' is true in the world to).

In what follows, we will use the same symbols to describe subsets of possible worlds and the
propositions that are true only in worlds that are members of such subsets. For example, the
symbol N' will be used to denote both the evidential set and the proposition that asserts the
validity of the corresponding evidential observations. Using this notation, for example, we
will write tv)- If to indicate that the world tv is compatible (i.e., logically consistent) with the

evidence If.

Furthermore, we will use the symbol ', introduced above as a set of well-formed sentences,
to denote also the power set of the universe U. Rigorously, subsets of U strictly correspond
to the classes of equivalence of the sentence set Y that are obtained by equating logically
equivalent sentences. In the same simplifying vein, we will drop also the customary distinction

2 For the sake of implidlty, fumy evidential facts auh as "Tom is rich," Usually considered in fuzzy logic, will not
be treated in this note. The meaning of u&h asations will be discussd ian a forthcoming paper.
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between sentences-the linguistic expressions of something that may be true or false-and
propositions-the actual things being asserted.

3. A binary relation R, between possible worlds, called the accessibility, conceivability, or reach-
ability relation, introduced to model the semantic of the modal operators N and II.

It is not necessary to review here the well-known axioms [21] that restrict the assignment of
truth values to well-formed sentences according to the rules of propositional logic. To facilitate
comprehension of our formalism, we need to recall solely the rules that constrain assignment of
truth values to sentences formed by prefixing other valid expressions with the modal operators, i.e.,

1. The sentence 0 is necessarily true in the possible world w (i.e., wl-N4) if and only if it is true
in every world w' that is related to the world w by the relation R.

2. The sentence 0 is possibly true in the possible world tv (i.e., wt- IIo) if and only if it is true
in some world w' that is related to the world w by the relation R.

If, for example, the relation R relates worlds that share the same (possibly empty) subset of true

sentences of the prespecified set of expressions

i.e., R(w, w') if and only if any sentence 4 in Jr is either true in both w and w' or it is false in both
w and w, then the resulting system has an "epistemic" interpretation that regards related possible
worlds as "being possible for all we know" (i.e., observed evidence, corresponding to a subset of

5W is the same for both worlds). In this case, the necessity operator N corresponds the epistemic
operator K of epistemic logics, with the corresponding system having the properties of the modal
system S5, which was used-in the context of probability theory-as the semantic basis for the
Dempster-Shafer calculus of evidence [35].

If, on the other hand, the original interpretation of logical necemity--corresponding to a relation
R that is equal to U x U, i.e., that relates every pair of possible worlds--is given to the operator N,
then a proposition is necessarily true if and only if it is true in every possible world.

If the relation R is chosen as
R=8 xS'

then this interpretation may be used to characterize approximate reasoning problems as those where
a hypothesis of interest is neither necessarily true nor necessarily false in worlds in the evidential
set I', reflecting the inability of conventional deductive techniques to unambiguously determine the
truth-value of the hypothesis.3

In those problems, in spite of this fundamental impossibility, we may resort to approximate rea-
soning methods to describe various properties of the evidential set I'. For example, the probabilistic
structures utilized by various probabilistic reasoning approaches typically characterize relations of
the form

p(H A') p(-H A f'),

between the "measures" of the subsets of the evidential set 8' where a hypothesis H is true or false,
respectively.

'The notion of apprsoimate reasoning problem is ofton extanded to encompas situations where deductive tech-
nique canot always be used becaue of practical limitations on computational reources
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Our aim will be to study how other structures, defining a metric or distance in the universe U,
may be used to describe the nature of the evidential set. To do so, we will assign a different meaning
to the accessibility relation, giving it an interpretation that regards related worlds as "similar" or
"close" in some sense. We will require, however, a scheme that is richer than that provided by a
single relation so that we can extend modal notions and derive semantics bases for fuzzy logic, which
relies on concepts of degrees of matching or closeness expressed by real numbers between 0 and 1.

In what follows we will use the symbols =* and 4* to denote strong implication and equivalence,
respectively. A proposition q strongly implies p (denoted q =: p) if and only if p is true in any world
where q is. Similarly, p is logically equivalent to q (denoted p 4* q) if and only if p and q are true in
the same subset of worlds of U.

Following traditional terminology, we will say also that a proposition p is satisfiabie if there exists
a possible world p such that w I- p.

5



3 EXTENDED MODALUTIES

We turn first our attention to the problem of generalizing modal logic formalisns to explain the
structures and functions of fuzzy logic.

A number of authors have studied various relations between fuzzy and modal logics. Lakoff [24],
Murai et al. [28], and Schocht [36] have proposed graded generalizations of basic modal constructs.
Dubois and Prade [13,14] have also explored analogies between these nonstandard logics. In a recent
paper [12], they have developed, in addition, a modal basis for possibility theory by means of the
introduction of fuzzy structures into modal frameworks with the goal of deriving proof mechanisms
that may be used in possibilistic reasoning.

The goal for the model presented in this note is somewhat different from the objectives guiding
those efforts. We will seek explanations for assibilistic constructs on the basis of previously existing
notions rather than generalizations of modal frameworks by means of fuzzy constructs. The model
presented here is not based on the use of graded notions of possibility and necessity as primitive
-and, by implication, easy to understand--structures. The foundation for this model is provided
by a generalization of the accessibility relation, which is given a simple interpretation as a measure
of resemblance and proximity between possible worlds.

We will extend the notion of accessibility relation to encompms a family of nonempty binary
relations R. that are indexed by a numerical parameter a between 0 and 1. These relations, which
are nested, i.e.,

R. g Rp, whenever # _a,

are introduced to represent different degrees of similarity, using a scheme that is akin to that used
by Lewis in his study of counterfactuals [25]. The family of accessibility relations introduced here
differs from that proposed by Lewis, however, in its use of numerical indexes4 and in the nature
of the overall modeling goals that, in Lewis' formalism, are intended to represent changes of scale
induced by consideration of different restrictive statements.

3.1 Similarity Relations

To facilitate the definition of a family of accessibility relations we introduce a similarity function

$ : U xU 1.-[0, 1],

assigning to each pair of possible worlds (to, u?) a unique degree of similarity between 0 (correspond-
ing to maximum dissimilarity) to I (corresponding to maximum similarity).

With the help of this function, we will then say that w and u' are related to the degree a,
denoted R.(w, w'), if and only if S(w,w') 2! a. In this way, the relations P, have the required
nesting property with Ro corresponding to the whole Cartesian product U x U (or, every possible
world is at least similar in a degree zero to every other possible world).

4 We will later we that umilarities may be measured uuing mom general, nom uneric, ocales. For .ampliaty reason,
we will avoid at thsi point the introduction of ine general ,demm that umnecenarily complicate the expositim.
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Some properties are required to asure that the function S has the required semantics of a
metric relationship capturing the intuitive notion of similarity or "proximity." It is first necessary
to demand that the degree of similarity between any world and itself be as high as possible, i.e.,

S(w, w) = 1, for all w inU.

This property assures that every one of the accessibility relations R. will be reflexive and, following
the nomenclature introduced by Zadeh for fuzzy relations [52], we will also say that the similarity
relation is reflexive.

Next, we will call for the function S to be symmetric, i.e.,

S(w, w') = S(w', w), for any worlds u; and w' in U.

This is a very natural requirement of any relation intended to represent a relation of resemblance
between objects.

Finally, and most importantly, we will impose a form of transitivity requirement upon the simi-
larity function S that turns it into a generalized equivalence relation. The purpose of this restriction
is to assure that S has a reasonable behavior as a metric in the universe of possible worlds. It would
certainly be surprising if, for some similarity S, we were to be told that to and u are very similar
and that to' and to" are also very similar, but that to does not resemble to' at all. Clearly, there
should be a lower bound on the possible values of S(w, t") that may be expressed as a function of
the values of S(w, u) and S(wo, to"). We will express such a constraint using a numeric operation,
denoted 4, that takes as arguments two real numbers between 0 and I and that returns another
number in the same range, i.e.,

e: [0, 1] X [0, 1] -- [0, 1],

in the form of the inequality

S(W, W") > S(W, W') * S(t',UP),

assumed valid for any worlds w, w' and w" in the universe U. Recurring again to a modal terminology,
the above transitivity constraint, which will be called *-transitivity. may be rewritten in relational
form as

P~op C R.ORP, for all 0 O a,# _< 1,

making obvious its generalization of the conventional definition of transitivity for ordinary binary
relations, i.e.,

RC RoR.

Since the role of @, through recursive application, is that of providing a lower bound for the
similarity between the two end members w, and w of a chain of possible worlds [Wi, tW2,. .. , Wn],

it is obvious that the operation @ should be commutative and associative. Furthermore, it should
also be nondecreasing in each argument, as it is reasonable to ask that the desired lower bound be
a monotonic function of its arguments. Finally, it is also desirable to ask that

a@1 =10a= a,

i.e., that the values of the similarities of two indistinguishable objects to a third should be the same.
These requirements are equivalent to demanding that the operation @ be a triangular norm [37],
orT-norm, for short.

7



Triangular norms, originally introduced in the theory of probabilistic metric spaces to treat
certain sLatistical problems, play a distinguished role in [0, 1]-multivalued logics [1,11,17,31] as the
result of imposing reasonable requirements upon operations that produce the truth value of the
conjunction of two expressions as a function of the truth values of the conjuncts. Furthermore,
generalized similarity relations (called B-R relations by Zadeh [54]) also have an important function,
to be examined further later in this note, in the generalization of the inferential rule of modus

ponens [43,10]. Our axiomatic derivation for the requirement that @ be a T-norm is based, however,
solely on metric considerations, applied here to a space of possible worlds, but is valid in general
metric spaces.

From the axioms of triangular norms, it is easy to see that

a* 0:< min(a, ) ,

showing that the minimum function, itself a T-norm, is the largest element in this clans of operations.
Its minimal element, on the other hand, is the noncontinuous function @ defined by

a® - 0, ifa-1,

0, otherwise.

Every symmetric and reflexive relation is *-transitive for this triangular norm, which is, therefore,
of little practical utility.

In what follows, we will also impose a most reasonable additional assumption of continuity of
@ with respect to its arguments (i.e., why should there be a jump in the value of a lower bound
provided by @ when the values of its arguments are slightly changed?). The clas of continuous

T-norms does not have a minimal element, although under certain additional assumptions (requiring
T-nornu to be also J-copulas[37]), the inequality

max(a + 0- 1,0) < ae

also holds true, showing that certain important continuous T-normo lie between that of the NJ-logic
of Lukasiewicz [17] and that of the original fuzzy logic proposed by Zadeh [53].

Continuous triangular norms play a significant part in the theories of pattern recognition and
automatic classification. The author [33] proposed the use of generalized similarity relations based
on the T-norm of Lukasiewicz to generalize existing classification techniques-based on the mapping
of a similarity function into a conventional equivalence relation--to the fuzzy domain-by mapping
these T-norm. (called likenes relations by Ruspini) into generalized fuzzy partitions. Bezdek and
Harris [3] independently studied axiomatic approaches to cluster analysis based on the use of several
continuous T-norm.

The author has also studied [34] the possible relation between the multivalued logic and similarity

related aspects of T-norms, and suggested that the degrees of similarity between two objects A and
B may be regarded as the "degree of truth" of the vague proposition

"A is similar to B."

Having argued that S should have the structure of a generalized equivalence relation, we will
assume, mainly for reasons of simplicity, that the function S is the dual of a "true" distance, i.e.,

that
S(w, w') I I if and only if w = w'.
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This restriction, which is not substantial, is introduced primarily to assure that different possible
worlds may be distinguished by means of the function S. Otherwise, the equivalence relation that
relates two worlds w and w' if and only if S(w, w') = 1 may be used to partition our universe U into
"indistinguishable" nonintersecting classes-indicating that our metric cannot discriminate between
significant differences in system state.

Before closing our presentation of generalized similarity relations, it is important to remark upon
the close relation between the notion of similarity and that of distance. If a function 6 is defined in
terms of a similarity function S by the simple relation

6=1-S,

then it is easy to see that the function b has the properties of a metric or distance. This is evident
if the operation @ corresponds to the T-norm of Lukasiewicz, since the transitivity condition is
equivalent to the well-known triangular inequality, i.e.,

6(w, w") < 6(w, w') + 6(w', w").

If other T-norms are used, even stronger inequalities hold, with the so-called "ultrametric inequality"

6(w, w") _ max ( b(w, w'), 6(w', w") )

being valid for the T-norm of Zadeh. In this case, each of the relations in the family &0 (known in
fuzzy set theory as the a-cut5 of the similarity S) is a conventional equivalence relation. This fact
was exploited, prior to the introduction of fuzzy set theory and fuzzy cluster analysis, by a variety
of clustering procedures of the "single-link" type [22,40].

3.2 Possible and Necessary Similarity

Our semantic formalization needs require the introduction of constructs to indicate the extent by
which a concept exemplifies, illustrates, or is an adequate model of another concept. Our interpre-

tations shall, therefore, be oriented toward characterization of the degree by which a concept can
be said to be a good example of another concept with the purpose of defining vague concepts by
means of measures of proximity between defined and defining concepts. In our treatment, each of
the multiple "definiens" will be a conventional proposition corresponding to a subset of possible
worlds. It is conceivable, however, that new vague concepts might also be described by indicating

their metric relations to other vague concepts.

The required constructs are based on the idea that whenever p and q are propositions such that
p : q, then any p-world is an "example" of a q-world. This basic notion will be generalized by the
introduction of modal structures that define to what degree possible worlds that satisfy a certain
proposition q fit a vague concept. Some of those possible worlds are "paradigmatic" of the vague
concept, i.e., they fit it to a degree equal to 1 in the same sense that we may say, for example, in an
absolute (i.e., nongraded) sense that somebody whose height is 7 ft is definitely "tall." If we use a
notion of graded fitness, however, certain worlds will fit the concept to a degree, i.e., they resemble
(or are similar) to some paradigmatic example of the vague concept.

The conventional interpretation of possibility needs to be modified, therefore, to capture the idea
that a particular possible world is similar in some degree to another world that satisfies a "reference"
proposition.

5The &-cut of a fussy set i: U - 10,11 is the conventional set of all points w such that ts(w) > o. A similar
concept is defined for relations a subsets of a product space U x V.
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More generally, however, we will be interested in relations of similarity between pairs of subsets of
possible worlds rather than between pairs of possible worlds. This requirement complicates matters
considerably since we will be forced to consider both the "validity" of a proposition p in some world
where another proposition q is true, as well as its applicability in every world where q is true. in
the former case, we will care about the existence of q-worlds that are similar to some degree to some
p-world, while in the latter we will be concerned with the size of the minimum neighborhood of p
(as a subset of the universe U) that fully encloses the subset q.

This dual concern for what may possibly apply and what must necessarily hold-an essential
aspect of modal logic-is typical of situations where relationships between ensembles of objects are
described in terms of relations between their members. In the probability calculus, for example,
knowledge of probabilities over certain families of subsets provides "sharp" upper and lower bounds
(called inner and upper probabilities, respectively) for the probabilities of other subsets-an impor-
tant fact in the extension of set measures to larger domains 119]. The role and properties of these
bounds in the Dempster-Shafer calculus of evidence is well-known, having been described in the
original paper of Dempster [8], related to concepts of modal logic by Ruspini [35], and being also the
subjects of considerable formal study [7] as mathematical structures.

Analogies between the role of probabilistic bounds (i.e., bounds for probability values) and pos-
sibiity/necessity distributions--shown below to have play a similar part with respect to metric
structures-have been the source of much of the confusion about the need for possibilistic schemes.
Each upper/lower-bound pair, however, leads to a substantially description of the nature of a subset
of possible worlds, being, in either case, measures that arise naturally when pointwise properties are
extended to set partitions. General properties of these measures have been studied by Dubois and
Prade [11] in the context of approximate reasoning and in other regards by Pavlak (30].

Our generalizations of the notions of possibility and necessity are related to the so-called de re [21]
interpretation of the statement "If q, then p is possible" as the modal p,-)positional relation

q = np.

We will say that the proposition q implies, or is a necessary model of, the proposition p to the

degree a if and only for every q-world to there exists a p-world w' that is at least a-similar to it,
(i.e., S(w, to) _> a), or equivalently, whenever3 q = HrP

q=: np.

Similarly, we will say that the proposition q is consistent with, or is a possible model of, the
proposition p to the degree a e if and only there exist a q-world tv and a p-world w' that are at leastIP
a-similar, or equivalently, whenever

-,(p =o -,oq).

I The similarity function that we have introduced in the universe U provides us with a simple
mechanism to quantify both the extent of "inclusion" and that of the "intersection" between pairs5 of subsets of possible worlds.'

GNote that our characterisations of both pombility and necemity diatnbutiom am based in the modal possibility
operaton II.

7Far remo that by now should be evident, we will not ed to introduce a concept of "unconditioned pmibility"
although it would be easy to do so using q = U. Being concerned with the power of certain propoitiom to exemplify
other conditionm, we will not have much occasuion to deal with the strength of tautologies in that regard.
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3.3 Possibilistic Implication and Consistence

The notion of subset inclusion and its related concept of set identity are of central importance in
deductive logic, since subsets of possible worlds are formally equivalent to propositions with subset
inclusion and identity corresponding to logical implication and equivalence, respectively. These
propositional relationships are the basis of derivation rules such as the modus poneus. The notion
of intersection plays a similar role in modal analyses because of its ability to express the potential
validity of a statement.

Classical accounts, however, recognize only two "degrees" of inclusion corresponding to the cases
when either a set q is a subset of another set p or it is not, with a similar dichotomy applying to
degrees of intersection. Our generalization exploits the metric structures defined between sets of pos-
sible worlds by introducing measures that describe a subset as enclosed in a neighborhood (of some
size) of another set while intersecting another of its neighborhoods (of "smaller" size).6 The problem
of measuring the "size" of those neighborhoods is vae subject of our immediate considerations.

3.3.1 Degree of Implication

Our definition of partial implication between propositions was based on conditions that determine
whether, given two propositions p and q, one of them implies the other to the some value a. In
particular, since every world w is always similar in a degree that is at least equal to zero to any
other world w', it is always true that any proposition q implies any other proposition p to the degree
zero. It is often the case, however, that the degree of implication between p and q is at least equal
to some certain positive value a.

If we want to generalize procedures based on inclusion relationships, such as the modus ponens,
in an efficient fashion, we will need measure the "optima" (or maximum) value of the parameter a
such that q implies p to the degree a. This value is a measure of the degree by which the set of all
p-worlds must be "stretched" to encompass the set of all q-worlds. The least upper bound of the
values of the similarities between any q-world u/ and some p-world w (depending, in general, from
wt') is given by the degree of implication function:

Definitio: The degree of implication of p by q is the value

I(p Iq) = inf sup S(w, t).
w'I-f Wu-p

Defined in this way, the degree of implication I (p I q) is a measure of the "minimal amount" of

stretching required to reach a p-world from any q-world, in the sense that if 6 < I(p I q), then

q * Ipp.

Furthermore, a is the largest real value for which the above statement may be made.

As the following theorem makes clearer, this function provides the bases for the generalization

of the modus ponens. This truth-derivation procedure may be thought of as an expression of the
nesting relationships that hold between the sizes of neighborhoods of such subsets.

1t is important to recall that, due to our reliance an similarity rather than on the dual notion of disinmiaity or
distance, high values of a correspond to low values of "stretching" or to smaller set neighborhooda.
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Theorem: The degree of implication function,

.I: Yx [0,1),

has the following properties:

(i) Ifp r, then I(plq) _I(rjq)

(ii) If q r, then I(p I q) >_ I(p I r)

(iii) I(plq) > I(pIr)®1(rlq)

3where p, q and r are any satisfiable propositions.

Proof: The first two properties are an immediate consequence of the definition of degree of impli-
cation. To prove the third, observe that by definition of similarity

S(w, w') 2! S(w, W") @ S(w", w')

for any worlds w, w', and w'.
Taking the supremum on both sides of this inequality with respect to all worlds w i- p, it follows,

because @ is continuous, that

sup S(ww ') 2! [sup S(w, W")] @S(w", W').
wI-p WI-p

3 Since this expression is true, in particular, for all worlds w" I- r, it is true that

sup S(w, W') _ inf sup S(w, W")] 0 S(tb, w')
wi-p w"l-r wI-p1(pl r)*s(tb,w'),

where tb is any world such that tb I- r.3 From this inequality, it follows, since 0 is continuous, that

sup S(w, w') _ I(pI r) [sup S(t, o')].I -p-r

Taking now the infimum on both sides of this expression over all worlds u/ such that w' - q, it is
easy to see, using again the continuity of @, that

inf sup S(w,w') > I(pIr)® [ inf sup S(tb, w)
W '- wi-p w'-q 10-r

3 proving the *-transitivity of I. U

3Note, that since I(q I q) = 1 for any proposition q, the following statement is also true:

Corollary. If p and q are propositions in Y, then

I(p I q) = sup [I(p I r) 1(r I q)].
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Notice also that if I(plq) = 1, then

sup S(w,') = 1, for all w' I- q.
WI-p

Under minimal assumptions (assuring that the supremum operation is actually a maximization),
this relation is equivalent to stating that q strongly implies p, or that any q-world is also a p-world.

The nonsymmetric function I measures the extent by which every world uw in a certain class
resembles some world w (dependent of w') in a reference class, possibly explicating the nature of
the nonsymmetric assessments [45] found in psychological experimentation when subjects are asked
to evaluate the degree by which an object "resembles" another. The results obtained in those
experiments suggest that human beings, when assessing similarity between objects, use one of them

(or a class of similar objects) as a reference landmark to describe the other. Such assymmetries might
be explained by noticing that, in general, I(p I q) i I(q I p), indicating that the stronger stimulus
might generally be used to construct a reference class, which is then used to describe other stimuli.

The degree of implication of one proposition by another can be readily used to generate a measure
of similarity between propositions that generalizes our original measure of similarity between possible
worlds:

S(p, q) = min [I(p Iq), I(q Ip)1,

quantifying the degree by which the propositions p and q are equivalent.

It may be readily proved [44], from its definition and from the transitivity property of I that S is
a reflexive, symmetric, and *-transitive function between subsets of possible worlds. This similarity
function is the dual of the well-known Hausdorff distance, defined between subsets of a metric as a
function of the distance between pairs of their members [91, which is given by the expression

i(AB) = max [( sup inf 6(ZY)), (sup inf 6(z, a))].
L sEA IiEB vEB IiEA

The result expressed by the transitive property of the degree of implication may be stated using
modal notation in the form

q* 11 rr and r*fl npq implythat q::114 epp,

as the simplest form of the generalized modus ponens rule of Zadeh.

The relationship between this rule and the classical modus ponens is easier to perceive if it is
remembered that classical conditional propositions of the form "If q, then p," simply state that the
set of q-worlds is a subset of the set of p-worlds. Such relationships of inclusion may also be described
in metric terms by saying that every q-world has a p-world (i.e., itself) that is as similar as possible
to it.

Logic structures, however, only allow us to say that either q implies p or that q implies its negation
-,p, or that neither of those statements is true. By contrast, similarity relations allow measurement
of the amount by which a set must be "stretched" (as illustrated in Figure 1) to enclose another
set. Using such metrics, we may describe the generalized modus ponens as a relation between the
stretching required to reach p from any point of the set r, the stretching required to reach r from

any point of the set q, and the stretching required to reach p from any point of the set q.

In Section 5 we will derive alternative expressions for the generalized modus ponens that allow

to propagate both measures characterizing degree of implication and degree of consistence; a dual
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Figure 1: The Generalized Modus Ponens.

concept that plays, with respect to the notion of possibility, the function that is fulfilled by the
degree of implication function with respect to necessity. In those derivations, by introduction of
sharper bounds for certain conditional concepts, we will also be able to improve the quality of the
bounds provided by generalized modus ponens rules while being closer in spirit to its usual fuzzy-logic
formulation.

3.3.2 Degree of Consistence

A notion that is dual to that of degree of implication is given by a function that measures the point-
wise proximity between pairs of possible worlds from an "optimistic" point of view characterizing
the degree by which statements that are true in some worlds may apply on others. By contrast, the
degree of implication measures the extent by which statements that are true in p-worlds must hold
in q-worlds.
Definition: The degree of consistence of p and q is the value

C (pq)= sup sup S(, W).
W'I-f W4-p

An immediate consequence of this definition that C (. I.) is a symmetric function that is increas-
ingly monotonic in both arguments (with respect to the *). It is also easy to see that the values
of the degree of consistence function are never smaller than the corresponding values of the degree
of consistence function,

I(Pl10:5 C (P 10,

as the amount of stretching required to reach p from some "convenient" q-world is smaller (i.e.,
higher values of S) than that required to reach p from any q-world. In general, however, the degree
of consistence function is not transitive, preventing the statement of a "compatibility" counterpart of
the generalized modus ponens rule. Its relationship with the degree of implication function expressed
by the expression

C(pIq)= sup l(pIw')=@up I(qIw)
W'If W-p

will permit us, nonetheless, to derive a useful bound-propagation expression.
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4 POSSIBILITY AND NECESSITY DISTRIBUTIONS

This section presents interpretations of the major constructs of fuzzy logic -possibility and necessity
distributions-in terms of similarity-based structures. Possibility and necessity distributions are

functions that measure the proximity of either all or some of the worlds in the evidential set to
worlds in other sets that are employed as reference landmarks.

The role played by possibility and necessity distributions is similar to that performed by lower
and upper bounds of probability distributions (or by the belief and plausibility functions of the

Dempster-Shafer calculus of evidence) with respect to probability distributions. The essential differ-
ence between these bounds and those provided by possibility/necessity pairs lies in the fundamentally
dissimilar character of what is being bound--metric structures relating pairs of worlds in one case;
measures of set size, on the other. Furthermore, in the model of possibilistic structures that is

presented in this note necessity (possibility) distributions are any lower (upper) bounds of certain
metric functions rather than its "best" or "sharpest" bounds. The operations of fuzzy logic allow
computation of bounds for some of these measures as a function of bounds of other measures.

4.1 Inverse of a Triangular Norm
When working in ordinary metric spaces, it is often convenient to express the conventional statement

of the triangular inequality, i.e.,

6(w, w') < 6(t,, W") + 6(w", tv'),

in the equivalent form
6(w,w') 2_ 16(w, w") - 6(w',w") I,

which utilizes a form of inverse (i.e., the substraction operator -) of the function used to express

the original inequality (i.e., the addition operator +). This notion of inverse may be directly gener-

alized [371 to provide us with the tools required to define possibility and necessity functions and to

derive useful forms of the generalized modus ponens involving either type of these constructs.

Definition: If @ is a triangular norm, its pseudoinverse 0 is the function defined over pairs of

numbers in the unit interval of the real line, by the expression

aob=sup{c: bc<a}.

From this definition it is clear that acb is nondecreasing in a and nonincreasing in b. Furthermore,

a 0 0 = 1 and a 0 1 = a for any a in [0, 1]. Other important properties of the pseudoinverse function
are given in the works of Schweizer and Sklar [37], Trillas and Valverde [43], and Valverde [44].

Examples of the pseudoinverses of important triangular norms are given in Table 1 together with
the corresponding conorms.
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Table 1: Triangular Norms, Conorms, and Pseudoinverses

Name T-Norm a b IConorr a i b Pseudoinvere a Q b

Lukasiewicz max(a +b- 1,0) min(a + b, 1) min(1 + a-b, 1)

Product ab a+b-ab a/b, if b >a
S1, otherwise

Zadeh min (a, b) max (a, b) a, ifb>a
1, otherwise

4.2 Unconditioned Necessity Distributions

We introduce first a family of functions that bound by below the value of the similarity between
any evidential world in 8 to some world where another proposition p is true. These unconditioned
necessity distributions are lower bounds for values of the degree of implication I(p I 8), which
measures the extent by which statements that are true in a reference set (i.e., the subset of p-worlds)
must hold in the evidential set.

As observed before, whenever I(p I8) = 1, it is true, under minimal assumptions, that the
evidential subset 8' is a subset of the set of all p-worlds, or that p necessarily holds in 8'. If, on
the other hand, I(p I 8') = a < 1, then p must be stretched a certain amount-with smaller a
corresponding to larger stretching-in order for one of its neighborhoods to encompass ff.

Definition: If 8' is an evidential set, then a a function Nec(.) defined over propositions in the
language Y? is called an unconditioned necessity distribution for f if

Ne(p) <5 I(p[ If).

4.3 Unconditioned Possibility Distributions

The dual counterpart of the unconditioned necessity distribution is provided by upper bounds of
the degree of consistence C(pIf'). Whenever C(pI ') = 1, it is easy to see that, under minimal
assumptions, there exists a p-world w that is in the evidential set 8' or, equivalently, that p (for all
we know) is possibly true. If, on the other hand, C(p I 8') = a < 1, then there exists a neighborhood
(of "size o) of some p-world that intersects the evidential set.
Definition: If 8' is an evidential set, then a function Pos(.) defined over propositions in the
language .Y is called an unconditioned possibility distribution for 8f if

Poss(p) > C(pI ').

Since the value Poss(p) of any possibility function Poss(.) is an upper bound of the value
C (p I 8) of the degree of consistence, while the corresponding value Nec (p) of any necessity function
Nec (.) is a lower bound of I(p I q), it follows that values of a possibility function can never be smaller
than the corresponding values of any necessity function, i.e., that

Nec (p) _< Poss (p).
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4.4 Properties of Possibility and Necessity Distributions

In this subsection we will develop similarity-based interpretations for some basic formulw of posui-
bilistic calculus. These expressions may be thought of as mechanisms that allow the extension of a
partially known possibility distribution. For example, the property that

max(Poss(p), Poss(q)) 2: C(p Vq I f),

which is proved below, is the similarity interpretation of the standard rule that allows computation
of the value of the possibility value of a disjunction in fuzzy logic, i.e.,

Poss (p Vq) = max( Poss (p), Poss (q) ).

Theorem: If p and q are propositions, and if the quantities Possa(p), Poss (q), Nec (p), and Nec (q)
are such that

Nec (p) :5 1(pj~) Nec (q) :51(

Poss (p) 2: C (p If' Poss (q) 2: C (9q1 )

then the following statements (similarity-based interpretations of the basic laws of fuzzy logic) are
valid:

max(Nec(p),Nec(q)) :5 I(pVqjff),
max(Poss (p), Poses(q)) ? C(pVqlff),
min(Poss(p),Poss(q)) 2: C(pAqIV').

Proof: Note first that since C (.j)is nondecreasing (with respect to the =:O order) in its argu-
ments, it is true that

Poss(p) ?: C(plS') 2: C(pAqlf'),
Poss(q) 2: C(qjf') 2: C(pAqIl'),

whenever p A q is satisfiable, from which it is easy to see that

min(Poss(p), Poss(q)) 2: C(p A q I s)
The corresponding result is obvious when p A q is nonsatisfiable.

A similar argument shows, for necessity functions, that

To prove the disjunctive law for possibilities, notice that if f is any function mapping elements
of a general domain D into real numbers, then

sup { 1 (d) : d E A U B) = max [sp(~) EA)sp(~) B)]
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From this equality, it is easy to see that if Poss(p) and Pos(q) are upper bounds of I(p I ')
and I(q 18'), respectively, then

max(Poss(p), Pose(q) ) > C(pVqi'),

completing the proof of the theorem. n

Note, however, that another law commonly given as an axiom for necessity functions does not hold
valid in our interpretation. As illustrated in Figure 2, the distance from a point to the intersection
of two sets may be strictly larger than the distances to either set (i.e., the similarity will be strictly
smaller). In general, therefore, it is

min(Sec(p), Nec(q)) J 1(p A q f)

making invalid, under this interpretation, the conjunctive law for necessities [11]

Nec (p A q) = min (Nec (p), Nc(q)).

q

Figure 2: Failure of Conjunctive Necessity.

We may also note in this regard that the similarity-based model that is discussed here does not
make use of the notion of negation either as a mechanism to generate dual concepts or on its own
right as an important logical concept. It is the intent of the author to study, in the immediate future,
alternative models where notions of negation and maximal dissimilarity play more substantive roles.

4.5 Conditional Possibilities and Necessities

The concepts of conditional possibility and necessity are closely related to the previously introduced
unconditioned structures. These structures may be thought of as a characterization of the proximity
of a world w to some or all of the worlds where a proposition p is true, given that w is similar in
the degree 1 to the evidential set I' (i.e. w F- 8'). With this fact, in mind, we could have used the
somewhat baroque formulation

C(P I') = su; [(plW) 0(I 1w)]
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to define unconditioned possibility distributions-a rather unnecessary effort if we consider that
I(S' I w) = I whenever w I- If, showing its obvious equivalence to the simpler form used in Sec-
tion 3.3.2 above. In spite of such observation, the above identity is important in understanding
the purpose of the definitions given below. Those definitions interpret conditional possibilities and
necessities as a measure of the proximity of worlds on the evidential set 8 to (some or all) worlds
satisfying a (conditioned) proposition p relative to their proximity to (some or all) the worlds that
satisfy another (conditioning) proposition q.

The mechanism used to specify that relationship, which is closely related in spirit to results of
Valverde [44] on the structure of indistinguishability relations, is based on the pseudoinverse function
introduced in Section 4.1. The basic idea used by these definitions is also illustrated in Figure 3,
where, from the perspective of the evidential world to, the similarity between the p-world u and the
q-world v is estimated by means of an inequality that generalizes the "absolute value" form of the
triangular inequality, i.e.,

6(u, v) > 16(u, w) - 6(v, w) I,
to its similarity-based form

S(u, v) < min [S(u, w) 0 S(v, w), S(v, w) 0 S(u,w)].

q

Figure 3: Similarities as Viewed from the Evidential Set.

The required interplay between similarities to conditioning and conditioned sets is captured by
the following definitions.

Definition: Let 8' be an evidential set. A function Nec(.1.) mapping pairs of propositions in the
language .Y into [0,1] is called a conditional necessity distribution for 8' if

Nec(qlp) < inf [I(qlw)O(plw)],

for any propositions p and q in .2.
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Definition: Let 8' be an evidential set. A function Poss(.I-) mapping pairs of propositions in the
I language .2' into [0,1] is called a conditional possibility distribution for I' if

_osA :s; [ Uq I W)o 0 U I),

for any propositions 
p and q in . .

It is easy to see, from these definitions, that the values of a conditional necessity distribution are
never larger than the corresponding values of any conditional possibility distribution, i.e.,

Nec(qlp) : Poss(qlp).

3 Furthermore, since I(. .) is @-transitive, then
I(q I wo) 2! I(q IV)4D1(pj to).

From this inequality and the definition of pseudoinverse of a triangular norm, it is easy to see that
any necessity function satisfies the inequality

I Nec(qlp) ? I(q Ip),

i.e., the bounds for necessity functions provided by the evidential-set perspective are stronger than
those that can be obtained by direct use of the degree of implication function.9

Note also that if Nec(p) = 1, indicating that I(p I 8) = 1, and if Nec (q(p) = 1, then the above
definition of conditional necessity shows that I(q 8') = 1, indicating that Nec (q) may be taken
to be equal to 1, thus generalizing the well-known axiom (consequential closure) of certain modal
systems (e.g., the system T, as discussed in Hughes and Creswell [21])

SIfNp andN(p - q), then Nq.

The definitions above can also be further interpreted as a way to compare the similarities between
evidential worlds and those in the conditioning and conditioned sets by noting that whenever

I(q I w) - I(p t),

3 for every evidential world to - If, then Nec(qlp) may be chosen to be equal to 1. Similarly, if
there exists some world to - 8' where this inequality holds, then it is Pos(qlp) = 1. In either case,
however, the maximum value for the conditional distribution (i.e., 1) is reached when the proximity
of one evidential world w--in the case of possibilities-or of every one of them-in the case of
necessities-to a world to in the conditioned set exceeds the proximity of to to the conditioning set
p. In either case, once again recurring to an apparent notational overkill, we may state this fact by
means of the identity function r in the unit interval:

I 
in the form

I(q 1 w) r'(I(P I W)),3 *A dual inequality for possibilities involving C(q 1 p) does not hold in general. It is easy to see, however, that
C(q I )e (p I ) s Pobility function for q gven P.
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for some w - I' in the case of possibilities, with the same inequality holding for every w F ff in the
case of necessities. We may, however, conceive of other functions

-f: [0, 1] " [0, 1]: a - (O),

with 7f(a) 2! a to specify a stronger form of implication, as illustrated in Figure 4, i.e.,

I(q I W) > (I(p I W)).

Similarly, one may also conceive of functions 0 with iO(a) _5 a that may be used to model weaker
forms of implication.

Xqlw)

0 1
IKplw)

Figure 4: Examples of Possible Similarity Relationships between Conditioning and Conditioned Sets.

Possibilistic calculi based on the propagation of truth-mappings of this type, first proposed by
Baldwin [2], are utilized in the RUM [4,5] and MILORD [18] expert systems. The particular case
when 7 = r, stating that every a-cut of the conditioning proposition p is fully enclosed (in the
conventional sense) in the a-cut of the conditioned proposition q, has been called the truth mapping
in the fuzzy logic literature.

The primary purpose of conditional distributions, however, is to provide a quantitative measure
of the strength by which one proposition may be said to imply another with a view to extend
inferential procedures by means of structures that superimpose the topological notion of continuity
upon a logical framework concerned with propositional validity.
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5 GENERALIZED INFERENCE

The major inferential tool of fuzzy logic is the compositional rule of inference of Zadeh (53], which
generalizes the corresponding classical rule of inference by its ability to infer valid statements even
when a perfect match between facts and rule antecedent does not exist, i.e.,

p p,
from p -- q to its "approximate" version p --. q

q q1

where e' and q' are similar to p and q, respectively. In this sense, the generalized modus ponens
operates as an "interpolation" (or, more precisely, as an "extrapolation") procedure in possible-world
space.

Unlike the interpolation procedures of numerical analysis, however, which yield estimates of
function value, this extrapolation procedure approximates truth in the sense that it produces a
proposition that is both more general than the consequent of the inferential rule and resembles it
to some degree (which is a function of the degree by which p resembles p). The "extrapolated
conclusion," however, is a correctly derived proposition, i.e., the result of a sound logical procedure
rather than of an approximate heuristic technique.

5.1 Generalized Modus Ponens

The theorems that are proven below are based on the use of a family .r of propositions that
partitions the universe of discourse U in the sense that every possible world will satisf at least one
proposition in ..

Definitiom: If P is a subset of satisfiable propositions in Y such that if w is a possible world in
the universe U, then there exists a proposition p in .R such that w F p, then the family . is called
a partition of U.

These results make use of information such as the values of the unconditioned necessity (resp., possi-
bility) distributions for antecedent propositions p in the family . together with the values Nec(qlp)
(resp., Poss(qlp)) to "extend" the unconditioned distributions to the "consequent" proposition q.
In this sense, these findings interpret, in the same spirit used in the theorem of Section 4.4 for other
basic laws, the generalized modus ponens laws of fuzzy logic:

Nec(q) = sup [Nec(qlp)@Nec(p)],

Poos(q) = sup [Pos(qJp)*Posu(p)].
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Theorem (Generalized Modus Ponens for Necessity Functions): Let .r be a partition of U and
let q be a proposition. If Nec(p) and Nec(qip) are real values, defined for every proposition p in
the partition .9, such that

Nec(p) _1 I )
Nee(qlp) <5 inf [1(qjw) O10pjw)],

wO-tV

then the following inequality is valid

sup [Nec(qlp)@Nec(p)] ][(q If').

Proof: Note first that since 0 is nonincreasing in its second argument and since

'(Pi I f)5 <UP I W)

for every evidential world w, it is

Nee(q~p)<5 inf [I(q Iw) 0I(p Iw)] <5 inf [I(q Iw) 0I(pl']

It follows then from the monotonicity and continuity of @ with respect to its arguments that

Nec(p)ODNe(qhp) <5 I(pj8')* inf [I(qjw)0I(pjV)]

-inf [I(pI-f')*((qjw)OI(p I

Sinf I(qlw)

= I(,I 8')

since l(pl I f) 0(1(q I w) 0 1(p I5 it) (q I w),

because of the definition of 0 and the continuity of S.

Since the above inequality is valid for any proposition p in .', the theorem follows. U

A dual result also holds for possibility functions.

Theorem (Generalized Modus Ponens for Possibility Functions): Let .r be a partition of U and
let q be a proposition. If Poss(p) and Poss(qlp) are real values, defined for every proposition p in
., such that

Poss(p) > C(pI '),
Poss(qlp) 2_ sup [I(qjw)0I(pjw)],

then the following inequality is valid

sup [ Poss(qlp) @ Poss(p)] _ C (q I V).

Proof: Note first that if w is an evidential world, then

C(P I V) > U(PIW)3
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It follows then from the nonincreasing nature of 0 with respect to its second argument that

Poss(qp) > su; [I(qIw) 01(p Iw)

> sup [I(qlw)OC(pI ')],
wF-F

and, therefore, that

Poss(qlp)oPoss(p) 2_ sup [I(qlw)eC(pIif)] @ C(pI I).
WI-I.

Taking now, in the above expression, the supremum with respect to all propositions p in 9, it
sup [Poss(qlp)@Poss(p)] _ sup [su [I(qIw)eC(p ff)] @ C(p f) (1)

Note, however, that since 94 is a partition, there always exists a proposition in 9.9 such that
C(j I') = 1 (i.e., P5 "intersects" f') and, therefore,

sup I(qIw)
-I-v

= C(ql'). (2)

The thesis follows at once by combination of the inequalities (1) and (2). 1

Finally, notice also that, although the theorems above have been characterized as duals, it is
not necessary that 9 be a partition for the generalized modus ponens for necessities to hold, while
the proof of its possibilistic counterpart relies on such assumption. It should be clear, however,
that richer propositional collections 9 would lead to better lower bounds for values of the degree
of implication I(q I P).

5.2 Variables

The @-transitivity property of I is the essential fact expressing the relationships between the degrees
of implication of three propositions that were proven in the previous section. The statements of
these relations in most works devoted to fuzzy logic are made, however, using special subsets of the
universe of discourse that are described through the important notion of variable. Introduction of
this concept, which is also central to other approximate reasoning methodologies, permits us to make
a clearer distinction between similarities defined, in some absolute sense, from the joint viewpoint of
several respects and related proximity measures that compare objects (in our case, possible worlds)
from the marginal viewpoint of one or more variables.

In what follows, we will assume that only certain propositions, specifying the value of a system
variable belonging to a finite set lr={IX, Y,Z,...},
will be used to characterize possible worlds.
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The propositions of interest are those formed by logical combination of statements of the type

"The value of the variable V is v,"

where V is in the variable set 9, and where v is a specific value in the domain 5F(V) of the variable

V.

We will also assume that, in any possible world, the value of any variable is a member of the
corresponding domain of definition of the variable. In the context of our discussion, we will not
need to make special assumptions about the scalar or numeric nature of the state variables, using
the notion in the same primitive and general sense in which it is customarily used in the predicate
calculus.

We will be specially interested in subsets, called variable-sets, of the universe U consisting of
worlds where the value of some variable V is equal to a specified value v. We will denote by [X = z]
(similarly [Y = y), etc.) the set of all possible worlds where the proposition "The value of the
variable X is z" is true. Clearly, the variable-sets in the collection

{ [X = Z]: Z is in 5W(X) }

partition the universe into disjoint subsets. These collections have recently been used to charac-
terize the concept of rough sets [30], of importance in many information-system analysis problems,
including some that arise in the context of approximate reasoning. A similar notion has also been
used also to describe algorithms for the combination of probabilities and of belief functions [39].

To simplify the notation we will write

wt'z, wi-y,...

as shorthand for wI- X = z], wFl[Y = y], ... , respectively.

5.2.1 Possibilistic Structures and Laws

The usual statements of the laws of fuzzy logic are made, as mentioned before, through the use of
variables rather than by means of general symbolic expressions. It is customary, for example, to
speak of the possibility of the variable X taking the value z, to describe the value that a possibility
function for an evidential set i' attains for the proposition [X = x].

In our model, we will say therefore, that a function

Poss(.): (X) -* [0, 11

is a possibility function for the evidential set 8' and the variable X, whenever

Poss(z) > C ( X= -Tz][ I'),

for all values z in the domain W(X). Similarly, we will say that Nec(-) is a necessity function for
X whenever

Nec(z) <I([X = z]l 8'),

for all values z in 5V(X).
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If possibility distributions are point functions defined in this way as point functions in the variable
domain 3F(X), then it is possible to use the disjunctive laws of fuzzy logic proved in Section 4.4 to

extend their definition over the power set of 5(X), i.e.,

Nec(AUB) = max[Nec(A), Nec(B)],

Poss(AUB) = max [Pos(A), Poss(B)),

where A and B are subsets of the domain 5(X). These equations are usually given as the basic3 disjunctive laws of possibility distributions.

Note that, using such extensions, both possibility and necessity functions are nondecreasing
functions (with respect to the order induced by set inclusion). The value of Nec (A) measures
the extent by which the evidence supports the statement that the variable value necessarily lies in
the subset A of its domain of definition, with a dual interpretation being applicable for possibility
distributions.

5.2.2 Marginal and Joint Possibilities

The original similarity relation introduced in Section 3.1 may be considered to be a measure of
proximity between possible worlds from the joint viewpoint of all system variables. The notion
of variable permits, however, the definition of similarities from the restricted viewpoint of some3 variables or subsets of variables.

These restricted perspectives play a role with respect to the original similarity S that is analogous
to that of marginal probability distributions with respect to joint probability distributions. To derive
useful expressions that describe similarities between two values x and z of the same variable X,

it should be noted first that the degree of implication I(. I') is transitive. This fact permits the
application of a theorem of Valverde [44] to define a function Sx by means of the expression

U Sx: 5(X) x 5W(X) .- (0, 1]: (z, z') " min [I(z It'), I(z' I z) ].

Defined in this way as a "symmetrization" of the preorder induced by the degree of implication

I(. I-), the marginal similarity Sx has the properties of a similarity function. Furthermore, the
"projection" operation entailed by the use of I (- I z'), based on the projection of every z'-world

into the set of z-worlds), may be considered to be the basic mechanism to transform the original
similarity function into one that only discern differences in the values of the variable X.

It must be noted, however, that, unless additional assumptions are made about the nature of the
original similarity S, the function Sx fails to satisfy the intuitive requirement

I S(W,w') <. Sx(w,w'),
whenever w I- z and w' F z' i.e., the similarity between two objects from a restricted viewpoint is3 always higher than their si-.ilarity from more general regards that encompass additional criteria of
comparison.

Although considerable research remains to identify alternative definitions of marginal similarities3 that are not hampered by this problem, a basic result of Valverde [44], presented in Section 6.2 below,
appears to provide the essential tool that must be employed in to produce the required coarser
measures. The role of additional reasonable assumptions that might be demanded from S so as to
facilitate the construction of marginal similarities with desirable characteristics is also the object of

current investigations of the author.
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52.3 Conditional Distributions and Generalized Inference

The basic conditional structures of fuzzy logic are usually defined as elastic constraints that restrict
the values of a variable given those of another. By simple extension of our previous convention to
conditional structures, we will write Nec(yiz) and Poss(yiz), as shorthand for

Nec([Y=y]I[X=z]) and Poss([Y=y]lI(X=z),

respectively.

If a classical (i.e., Boolean) inferential rule of the type

"If X = z, then Y is in R(z)"

is thought of as the definition of a relation R defined over pairs (z, y) in the Cartesian product
X x Y, then such a relation may be used to define a multivalued mapping that maps possible values
of X into possible values of Y as illustrated in Figure 5.

.rj c e . .....

.vd n e... .. ...... .

Evidence In X

Figure 5: Inference as a Compatibility Relation.

Such a compatibility relation perspective was an essential element of the original formulations
of both the Dempster-Shafer calculus of evidence [8] where distributions in some space (i.e., the
domain of some variable X) are mapped into distributions of another variable (i.e., the domain of
another variable Y) by direct transfer of "mass" from individual values to the union of their mapped
projections and the compositional rule of inference [51].
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Note that, whenever Poss(ylz) = 1, if the bound is actually attained, i.e, if

sup [I(yIw) 01(zIw)] = 1,

then it is possible for an evidential world w in [X = x] (i.e., I(z I w) = 1) to be such that w F- y.
Pairs (z, y) such that Poss (yz) = 1 may be considered to approximate the core10 of a generalized
inferential relation that allows to determine bounds for the similarity between evidential worlds
and those in the variable set [Y = y] on the basis of knowledge of sirilar bounds applicable to
the variable set [X = r]. This relation, which is the fuzzy extension of the classical compatibility
mapping R illustrated in Figure 5, may be thought as a descriptor of the behavior, for x-worlds,
of the values of the variable Y "near" R. The compatibility relation is itself approximated by (or
embedded in) the core of the conditional possibility distribution, i.e., worlds w such that w F- z and
w I- y, with Poes(ylz) = 1.

Since the collection of the sets [X = z] partitions the universe U into disjoint sets, then the
generalized modus ponens laws may be readily stated in terms of variable values as

Nee(y) = sup [Nec(ylz)@Nec(z)],
X

Pos (y) = sup [Pos (yz) 4 Poss(z)],

clearly showing the basic nature of the inferential mapping as the composition of relational combi-

nation (i.e., @-"intersection") and projection (i.e., maximization).

5.2.4 Fuzzy Implication Rules

In this section we will examine proposed interpretations for conditional rules, usually stated in the
form

IfXis A, then Yis B,

within the context of possibilistic logic. While, in two-valued logic, any such rule simply states that
whenever a condition A is true, another condition B also holds, various interpretations have been

proposed for rules expressing other notions of conditional truth.

In the case of probabilities, for example, degrees of conditionality have been modeled either by
means of conditional probability values Prob(A I B), which measure the likelihood of B given the
assumed truth of A, or by the alternative interpretation Prob(-,A V B), used by Nilsson (29] in his
probabilistic logic, which esasentially quantifies the probability that a rule is a valid component of a

knowledge base. Either one of these interpretations is valid in particular contexts being, respectively,
the probabilistic extensions of the so called "de re," i.e.,

p - rlq,

and "de dicto", i.e.,
n (p -. q),

interpretations of conditionals in modal logic.
1°The core of a fuzzy met p: U P-* [0,11 is the set of all points v such that p(w) - 1, i.e., the points that "fully"

belong to p.
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In fuzzy logic, two major interpretations have been advanced to translate conditional rules, 11

with A and B corresponding to the fuzzy sets

PA:X '-[0,1], and ps:Y -4[0,1].

The first interpretation was originally proposed by Zadeh [52], as a formal translation of the
statement

If PA is a possibility for X, then pB is a possibility distribution for Y.

This conditional statement, which may be regarded as a constraint on the values of one variable
given those of another, states the existence of a conditional possibility function Poss (I-) such that

PB(Y) _: sup [Poss(Yl) @0PA(z)] > Poss(YIz) @ PA(z).

Recalling now the definition and properties of the pseudoinverse, we may restate this particular
interpretation as

PoSs(YIz) = PB(I) 0 PA() _ I( I w) 0 I(z I w),

for every world w - f'.

In Zadeh's original formulation, made within the context of a calculus based on the minimum
function as the T-norm, conditionals were, however, formally translated by means of the pseudoin-
verse of the Lukasiewicz T-norm. Certain formal problems associated with such a combination were

pointed out by Trillas and Valverde (42], who developed translations consistent with the T-norm
used as the basis for the possibilistic calculus.

Using the characterization of conditionals introduced in Section 4.5, this relation may also be
thought of as a measure of the degree by which a possibility for Y exceeds a fraction (measured
by the conditional possibility distribution) of a given possibility distribution for X. In particular,
whenever Poss(ygz) = 1, then PB(y) 2_ PA(Z), indicating the posaible existence -- since Poss(yilz)
is only an upper bound of I(y I w) 0 I(z I w) - of an evidential world such that w I- z and w I- y,
with z in A and y in B.

As illustrated in Figure 6, where it has been assumed that the underlying metric (i.e., dissimilar-
ity) is proportional to the euclidean distance in the plane, the core of the corresponding conditional
possibility distribution is an (upper) approximant of a classical compatibility relation (indicated by
the shaded area in the figure) that fans outward from the Cartesian product of the cores of A and B.
If this interpretation is taken, whenever several such rules are available, then each one of these rules
will lead to a separate possibility distribution. Combination of these upper bounds by minimization

results in a sharper possibility estimate tht represents the "integrated" effect of the rule set.

The second interpretation of conditional relations, leading to a wide variety of practical appli-
cations [41], was utilized by Mamdani and Assilian to develop fuzzy controllers. The basic idea
underlying this explanation follows an approach originally outlined by Zadeh [47,48,51]. In this case,
a number of conditional statements of the form

If Xis Ak, then Y is B, k= 1,2,...,n,

are given as a combined "disjunctive" description of the relation between X and Y, rather than
as a set of independently valid rules. The purpose of this rule set is the approximation of the

IA rather encompm g account of potendil fuzy raming medhanisms can be found in a paper by Misumoto,
Fukami, and TanaL. [27]
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Figure 6: Rules as Possibilistic Approximanta of a Compatibility Relation.

Figure 7: Rule-Sets as Possibilistic Approximants of a Compatibility Relation
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compatibility relation by a "fuzzy curve" generated by disjunction of all the rules in the set, as
shown in Figure 7.

Recalling the characterization of conditioning as an extension of a classical compatibility relation,
we may say that the core of the compatibility relation is approximated by above by the union

U [Core (PA.) ore (,B)]

k=1

of the Cartesian products of the cores of the fuzzy sets for A1 and Bk. In this case the multiple rules
are meant to approximate some region of possible (X,Y) values, and the result of application of
individual component rules must be combined using maximization to produce a conditional possibil-
ity function. We may say, therefore, that under the Zadeh-Mamdani-Assilian (ZMA) interpretation,
the function

Poas(Yz) = sup [m(PA(z),PB(P))]'

is a conditional possibility for Y given X.

It is important to note that the two interpretations of fuzzy rules that we have just examined
are based on different-approaches to the approximation (by above) of the value

sup [I( IW) I(z w)],

being, in the the case of the Zadeh-Trillas-Valverde (ZTV) method, the result of the coqiunction of
multiple fuzzy relations such as that illustrated in Figure 8, while, in the case of the ZMA logic, the
construction requires disjunction of relations such as that illustrated in Figure 9.

The difference between both approaches when combining several rules is illustrated also in Fig-
ures 10 and 11, showing the contour plots for the a-cuts of the fuzzy relations that are obtained
in a simple example involving four rules. In these figures, the rectangles with a dark outline corre-
spond to the Cartesian products of the cores of the antecedents A, and Bk. Darker shades of gray
correspond to higher degrees of membership.

The reader should be cautioned, however, about the potential for invalid comparisons that may
result from hasty examination of these figures. Each formalism should be regarded as a procedure for
the approximation of a compatibility relation that is based on a different approach for the description
of relationships between variables. In the case of the ZMA interpretation, the intent is to generalize
the interpolation procedures that are normally employed in functional approximation. As such, this
approach may be said to be inspired by the methodology of classical system analysis. The ZTV
approach, by contrast, is a generalization of classical logical formulations and may be regarded,
from a relational viewpoint, as a procedure to describe a function as the locus of points that satisfies
a set of constraints rather than as a subset of "fuzzy points" of a Cartesian product.

Figures 10 and 11, while showing that the same rule sets would lead to radically different results,
should not be considered, therefore, to discredit interpolative approaches as such techniques, pro-
ceeding from a different perspective, should normally be based on rule sets that are different from
those utilized when rules are thought of as independent constraints.
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Figure 8: A Poseibilistic Conditional Rule (ZTV)

Figure 9: A Component of a Disjunctive Rule Set (ZMA)
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Figure 10: Contour Plots for a Rule Set (ZTV)

Figure 11: Contour Plots for a Rule Set (ZMA)
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6 THE NATURE OF SIMILARITY RELATIONS

In this closing section, we will examine issues that arise naturally from our previous examination of
the role of similarities as the semantic bases for possibility theory.

Our discussion focuses on two topics. We look first at the requirements that our theory imposes
upon the nature of the scales used to measure proximity or resemblance between possible worlds.
Finally, our examination of the interplay between similarities and possibilities turns to issues related
to the generation of similarity relations from such sources as domain knowledge that describes
significant relations between system variables.

6.1 On Similarity Scales

Our previous interpretation of possibilistic concepts and structures has been based on the use of
measures of proximity that quantify interobject resemblance using real numbers between 0 and 1.
Our assumptions about the use of the [0,1] interval as a similarity scale have been made primarily,
however, as a matter of convenience so as to simplify the description of our model while being
consistent with the customary definitions of possibility and necessity distributions as functions taking
values in that interval.

Close examination of the actual requirements imposed upon our similarity scales reveals, however,
that our measurement domain may be quite general so as to include symbolic structures such as

{ identical, very similar,..., completely dissimilar).

Our model is based on the use of a partially ordered set having a maximal and a minimal element
that measure identity and complete dissimilarity, respectively. Furthermore, we have assumed the
existence of a binary operation (the triangular norm @) mapping pairs of possible worlds into real
numbers, with certain desirable order-preserving and transitive properties. The concept of triangular
norm, however, does not rely substantially on the use of real numbers as its range and may be readily

extended to more general partially ordered sets with maximal and minimal elements.

We have also assumed a continuity property for the triangular norm operation. This property,
however, simply requires that a notion of proximity also exist among similarity values so as to
provide a form of (order-consistent) topology in that space. While, in general, more precise scales
will result in more detailed representations of interworld similarity, it is important to stress that the

similarity-based model presented here does not rely in "densenem" assumptions such as the existence

an intermediate value c between any different values a and b in the similarity-measurement scale.

From a practical viewpoint, the major requirement is to quantify proximity in such a way as to
be able to determine that two quantities are similar to some degree (i.e., approximate matching).

The degree of precision that such a matching entails is problem-dependent and will be typically the
result of conflicting impositions between the desire, on one hand, to keep granularity relatively high
to reduce complexity, and the need, on the other, to describe system behavior at an acceptable level
of accuracy. The work of Bonissone and Decker [4] is a significant example of the type of systematic
study that must be carried out to define similarity scales that are both useful and tractable.
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6.2 The Origin of Similarity Functions

The model of fuzzy logic presented in this note is centered on the metric notion of similarity as a
primitive concept that is useful to explain the nature of possibilistic constructs and the meaning
of poeibilistic reasoning. In this formulation, similarities are defined as real functions defined over
pairs of possible worlds.

From this perspective, similarities describe relations of resemblance between objects of high com-
plexity, which, typically, result from consideration of a large number of system variables. Reliance
on such complex structures has been the direct consequence of a research program that stressed
conceptual clarification as its primary objective. In practice, however, it will be generally difficult
to define complex measures that quantify similarity between complex objects on the basis of a large
number of criteria.

Similarities provide the framework that is required to understand approximate relations of corele-
vance, usually stated as generalized conditional rules. The practical generation of similarity functions
typically proceeds, however, in the opposite direction, from separate statements about limited as-
pects of system behavior to general metric structures. Once such resemblance measures are defined,
they may be used to express and acquire new laws of system behavior determined, for example, from
historical experience with similar systems. Furthermore, such similarity notions may be used as the
basis for analogical reasoning systems that try to determine system state on the basis of similarity
to known cases [23].

Perhaps the simplest mechanism that may be devised to generate complex metrics from sim-
pler ones is that which starts with measures of resemblance that quantify proximity from a limited
viewpoint. These metrics are usually derived, using a variety techniques, in unsupervised pattern
classification (or clustering) problems [20]. In many important applications, hierarchical taxonomies
-a feature of many representation approaches in artificial intelligence-may be used, often in con-
nection with a variety of weighing schemes--quantifying branching importance-to generate metrics
that often satisfy the more stringent requirements of an ultrametric [22].

Classification hierarchies such as those may be thought of as sets of general rules, having a par-
ticularly useful structure, that specify interset proximity from relevant, but restricted viewpoints,
eventually providing measures of similarity between variable values (i.e., the "leaves" of the taxo-
nomical tree). More generally, however, we may expect that sets of possibilistic rules (i.e., a general
knowledge base) defining a general semantic network of corelevance relations may be available as
the source for the determination of interobject proximity. These possibilistic semantic networks
resemble conventional semantic networks in most regards, being more general in that, in addition
to specifying knowledge about system behavior in some subsets of state-space,1 2 they also specify
characteristics of behavior in neighborhoods of those subsets.

We may think, therefore, that the antecedents of implicational rules define general regions in state
space where existence of relevant knowledge may increase insight through application of inferential
rules. Using Zadeh's terminology, these antecedents define "granules" that identify important regions
of state-space and indicate the level of accuracy that is required (or granularity) to perform effective
system analysis. In this case, the possibilistic granules correspond to fuzzy sets that are used to
specify both what is true in the core of the granule and, with decreasing specificity, what is true
in a nested set (i.e., the a-cuts) of its neighborhoods. The ability to specify behavior using such
a topological structure results in inferential gains that are the direct consequence of our ability

12The ex re t . is loosely used here to indi the spa&e ddJed by &D systeM varils.

35



to reason by similarity; an ability that is made possible by the approximate matching property
of the generalized modus ponens. From another perspective yet, the fuzzy granules identified by
possibilistic rules may also be thought of as generalizations of the arbitrary variable sets used in
a variety of artificial intelligence efforts aimed at understanding system behavior using qualitative
descriptions of reality [16].

A number of heuristics may be easily formulated to integrate "marginal" measures of resemblance
into joint similarity relations. More generally, however, we may state the problem of similarity
construction as that of defining metric structures on the basis of knowledge of the aspects of system
behavior that are important to its understanding-i.e., the previously mentioned granules, which
define what must be distinguished. Since generally those granules are fuzzy sets, the relevance to
similarity construction of the following representation theorem, due to Valverde, may be immediately
seen:

Theorem [Valverde]: A binary function S mapping pairs of objects of a universe of discourse U
into [0, 1] is a similarity relation, if and only if there exists a family X' of fuzzy subsets of U such
that

for all w and / in U, where the infimum is taken over all fuzzy subsets h in the family X.

Besides its obvious relevance to the generation of similarity relations from knowledge of important
sets in the domain of discourse, Valverde's theorem-resulting originally from studies in pattern
recognition-is also of potential significance to the solution of knowledge acquisition problems be-
cause of the important relations that exist between learning procedures and structure-discovery
techniques such as cluster analysis.
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7 CONCLUSION

This note has presented a similarity-based model that provides a clear interpretation of the major
structures and methods of possibilistic logic using metric concepts that are formally different from
the set-measure constructs of probability theory. Regardless of the potential existence, so far un-
established, of probability-based interpretations for possibilistic structures, this metric model makes
clear that there are no compelling reasons to confuse two rather different aspects of uncertainty into
a single notion simply because one's favorite theoretical framework, in spite of its otherwise many
remarkable virtues, fails to fully capture reality.

Succintly stated, being in a situation that resembles a state of affairs S does not make S likely or
viceversa. Furthermore, our reference state may not even be possible in the current circumstances

-making it completely unlikely-but we may still find it useful as a comparison landmark.This
use of "impassible" examples as a way to illustrate system behavior is very prevalent in human
culture, being exemplified by such utterances as "he had the strength of a horse and the swiftness
of a swallow," even if it is obvious to all that no such beasts exist other than for such metaphorical
purposes.

The insight provided by this model makes it rather obvious that very little can be gained by
continuing to assert a potential-although never revealed--encompassing probabilistic interpretation

for possibilistic structures that, presumably, would render them unnecessary as serious objects of
scientific discourse. In addition, and quite beyond whatever understanding theory may provide, the
current success of possibiistic logic as the basis for major systems of important human value [41]
-- often unmatched by other approaches---should be enough to convince those having more pragmatic
perspectives as to its utility.

The task for approximate reasoning researchers is to proceed now beyond unnecessary controversy
into the study of the issues that arise from models such as the one presented in this note. Among
such questions, further studies of the relations between the notions of possibility, similarity, and
negation and of those between probability and possibility are of major importance.
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